
Dissertation

Leveraging Recommender Systems for
the Creation and Maintenance of

Structure within Collaborative
Social Media Platforms

Eva Zangerle

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of “Doktor der technischen Wissenschaften”

Advisor: Univ.-Prof. Dr. Günther Specht

Innsbruck, December 2012

Abstract

During the last decade, the web transformed from a web of information con-
sumers to a web of information producers. In particular, the advent of online
social media platforms is hugely responsible for this shift as people now ac-
tively post information in knowledge bases, engage in online communities and
contribute to social media platforms. Hence, a vast amount of new informa-
tion is produced each day. This publicly available data is an invaluable source
of information which still is to be fully exploited. Due to the broad span of
users of such systems (originating from different cultures and backgrounds,
speaking different languages, etc.), the information provided features a lim-
ited amount of common structure, as e.g., objects are named differently and
information is structured differently. This is a severe constraint in regards to
the performance of search facilities.

This thesis proposes to facilitate recommender systems to create and maintain
a common structure within collaborative social media platforms aiming at im-
proving search performance. For this purpose, two different recommender sys-
tems for two showcase platforms are presented. The first recommender system
provides recommendations for structuring information within a semistructured
information system whereas the second recommender systems is a hashtag rec-
ommender system for microblogging services.

Zusammenfassung

Während des letzten Jahrzehnts hat sich das Web von einem Netz von Infor-
mationskonsumenten zu einem Netz von Informationsproduzenten gewandelt.
Insbesondere die zunehmende Verbreitung von Social Media Plattformen hat
großen Anteil an dieser Entwicklung. Menschen erstellen nun aktiv Beiträge
in Wissensbasen, beteiligen sich in online Communities und wirken bei Social
Media Plattformen mit. So werden täglich sehr große Datenmengen erzeugt,
die für die Öffentlichkeit zugänglich sind. Allerdings werden diese wertvollen
Datenmengen noch nicht vollständig genützt. Aufgrund der großen Diversität
der Benutzer (verschiedene Kulturen, Hintergründe, verschiedene Sprachen,
etc.), weisen die verfügbaren Informationen nur beschränkt eine gemeinsame
Struktur auf, so sind beispielsweise gleiche Objekte oft verschieden benannt
oder Information ist verschieden strukturiert. Dies wirkt sich negativ auf die
Performance der Suche auf diesen Daten aus.

Diese Dissertation beschäftigt sich mit der Fragestellung, wie Recommender
Systems (dt. Empfehlungssysteme) verwendet werden können, um eine gemein-
same Struktur in kollaborativen Social Media Plattformen erstellen und pfle-
gen zu können. Das Ziel dabei ist, die Such-Performance auf diesen Daten
zu verbessern. Dazu werden zwei exemplarische Empfehlungssysteme für
zwei solchen Plattformen präsentiert. Das erste Empfehlungssystem stellt
Empfehlung für die Strukturierung von Information in semistrukturierten In-
formationssystemen zur Verfügung. Das zweite Empfehlungssystem ist ein
Hashtag-Empfehlungssystem für Microblogging Plattformen.

Acknowledgements

... and I hope they know I never would have made it this far on my own...

Sarah, Robert and Wolfi, thank you for making these last years the most
memorable and amazing experience. Thank you for countless late night dis-
cussions, table tennis games, coffee breaks, sports, cinemas and travels. Wolfi,
wow—what a rollercoaster ride these years have been. You’re the one I owe
the most, you’re my rock. Thank you for believing in me when I didn’t. Sarah,
you’re the best! Thank you for the kitchen table evenings, the (non-computer
science) dinner conversations, everything. Robert, we’ve come a long way to-
gether from the first day of our studies more than a decade ago. Since this
very day, you’ve been the most patient, generous and fun companion. Thank
you!

Thank you to all the DBIS members: Dominic, Michi, Seppi, Niko, Gabi,
Peter—you’re also hugely responsible for making my time at DBIS enjoyable,
fun and entertaining. Thank you for your help and the distractions.

A special “thank you” goes to my parents and my sister who supported me
regardless of the fact that they do not fully understand what I’ve been working
on throughout the last years.

I also want to thank my advisor Günther Specht for giving me the opportunity
of writing this thesis and his support during this time.

This work was partially funded by the Tiroler Wissenschaftsfonds and the
Nachwuchsförderung of the Leopold-Franzens-University Innsbruck.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift,
dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die
wörtlich oder inhaltlich den angegebenen Quellen entnommen wurden, sind als
solche kenntlich gemacht. Die vorliegende Arbeit wurde bisher in gleicher oder
ähnlicher Form noch nicht als Magister-/Master-/Diplomarbeit/Dissertation
eingereicht.

Datum Eva Zangerle

Contents

Abstract I

Zusammenfassung III

Acknowledgements V

Table of Contents VIII

1. Introduction 1
1.1. Motivation . 1
1.2. Aims and Research Questions 3
1.3. Contributions and Published Work 3
1.4. Methodology . 7
1.5. Thesis Outline . 8

2. Recommender Systems 9
2.1. Aim of Recommender Systems 10
2.2. Overview . 13
2.3. Collaborative Filtering . 13

2.3.1. Memory-Based CF . 14
2.3.2. Model-Based CF . 14

2.4. Content-based Recommender Systems 15
2.5. Demographic Recommender Systems 16
2.6. Knowledge-based Recommender Systems 16

Contents

2.7. Hybrid Recommender Systems 17
2.8. Conclusion . 18

3. Microblogs 19
3.1. Background: Twitter . 20
3.2. Twitter Data Set . 27

3.2.1. Data Set Creation . 28
3.2.2. General Aspects . 29
3.2.3. Hashtag Popularity Distribution 30
3.2.4. Hashtag Distribution per Tweet 33
3.2.5. Position of Hashtags within Tweet 36
3.2.6. Languages . 36

3.3. In-Depth: Hashtags and Heterogeneity 37
3.4. Hashtag Recommendation Concept 41

3.4.1. Basic Algorithm . 42
3.4.2. Similarity of Microblog Entries 43
3.4.3. Ranking Strategies . 49
3.4.4. Co-Occurrence of Hashtags 52
3.4.5. User-Specific Recommendations 54

3.5. Evaluation . 55
3.5.1. Metrics . 56
3.5.2. Preprocessing of Data 58
3.5.3. Evaluation Algorithm 59
3.5.4. Results . 61

3.6. Principal Architecture and Implementation 70
3.6.1. Prototypical Architecture 70
3.6.2. Architecture of a Scalable Live-System 72

3.7. Related Work . 76
3.7.1. Twitter . 76
3.7.2. Hashtags . 78
3.7.3. Recommendations in the Twittersphere 81
3.7.4. Tag Recommendations 84

3.8. Conclusions and Future Work 85

4. Semistructured Information Systems 89
4.1. Semistructured Data . 92
4.2. Snoopy Concept . 94

4.2.1. Content-Aware Structure Recommendations 95
4.2.2. Content Recommendations and Semantic Refinements . 96
4.2.3. Auto-Completion Features 97

4.3. Recommendation Mechanisms 97
4.4. Evaluation . 101

4.4.1. Metrics . 102
4.4.2. Data Set . 102

X

Contents

4.4.3. Evaluation Setup . 103
4.4.4. Evaluation Algorithm 104
4.4.5. Results . 106

4.5. Related Work . 109
4.5.1. Structured Data Extraction 109
4.5.2. Collaborative Information Systems 112

4.6. Conclusions and Future Work 113

5. Conclusion 115

A. Appendix 119
A.1. Twitter API Object . 119
A.2. Detailed Evaluation Results . 122

A.2.1. Recall Evaluation . 122
A.2.2. Precision Evaluation . 123
A.2.3. F1 Evaluation . 124
A.2.4. Refinement Precision Evaluation 125
A.2.5. Refinement F1 Evaluation 126
A.2.6. Hybrid Ranking Evaluation 127

List of Figures 131

Bibliography 133

Curriculum Vitae 147

XI

CHAPTER 1

Introduction

1.1. Motivation

Throughout the last years, the web transformed from a web where most users
were simple consumers passively viewing website to a more active and partic-
ipatory medium. Users are now able to actively contribute to and engage in
knowledge bases, online communities and social platforms. Such community-
based systems like collaborative information systems or social media platforms
share the fact that huge amounts of users contribute to a common knowledge
base, i.e. the online encyclopedia Wikipedia1 was created solely by the effort
of a committed community. Such communities consist of a huge number of
users originating from various different countries, backgrounds and cultures.
Moreover, these users may also speak different languages. The more heteroge-
neous the users are, the more heterogeneous the vocabulary used within online
communities is as users tend to use differing and heterogeneous vocabulary.
E.g., one user may use the term “population” whereas another user may de-
scribe the same fact by using the term “inhabitants”. Also, people tend to
structure information differently.

1http://www.wikipedia.org

1. Introduction

Due to such differences concerning the usage, collaborative information sys-
tems and social media platforms are not able to achieve their full potential in
regards to search facilities. Searching an information system for e.g. all cities
having more than 100.000 inhabitants requires knowledge about the stored
information. Such a query can only lead to a correct and precise result set if
the stored information is based on a homogeneous vocabulary, i.e. all users
stick to the term “population”. In this case, querying for “population” leads
to the correct search result. However, if some users also used the synonymous
term “inhabitants”, these facts may not be incorporated in the search results
even though the information is semantically relevant for the query. Therefore,
the more users adhere to a common structure, the higher is the benefit. This
thesis is concerned with the question of how the users of such collaborative
information systems can be supported aiming at creating and maintaining a
homogeneous structure within the system’s data. In particular, recommender
systems are facilitated for this task.

The notion of a recommender system describes a system which automatically
provides its users with useful recommendations for items they might be inter-
ested in. Traditionally, recommender systems are used in online shops where
clients are pointed to further products. Another scenario is the recommenda-
tion of movies for the users of a movie database. Such recommendations are
computed by applying similarity measures to the stored data in order to either
find items similar to those the user bought before or to find users with simi-
lar preferences to further deduce item recommendations. Throughout the last
years, the research field of recommender systems has gained significant impor-
tance in both economy and academia. Recently, recommender systems have
proven to be suited not only for the traditional, above mentioned use cases.
Recommender systems have e.g. also been implemented for the suggestion of
friends in social networks.

In this thesis, we propose that recommender systems can be facilitated for
the creation of a common structure within collaboratively created data sets.
Therefore, two different recommender systems are presented. The first recom-
mender system proposed in this thesis is related to microblogging platforms.
Such platforms enable users to share short messages with the public and gained
massive popularity during the last years. On the Twitter microblogging plat-
form2, hundreds of millions of such microblog entries are issued each day. This
massive amount of information is hardly structured and hence, users proposed
to make use of so-called hashtags. Such hashtags are keywords describing
the topic of the tweet and can be recognized by the leading hash-sign (#) as
e.g., the hashtag #www2012 is used for posts concerned with the WWW 2012
conference. Again, such hashtags may be chosen freely by the users and this

2http://www.twitter.com

2

1.3. Contributions and Published Work

naturally leads to a heterogeneous sets of hashtags. Therefore, we propose a
recommender system which aims at providing users of microblogging services
with suitable recommendations for hashtags for their tweets already during
the composition of the according microblog post. The second recommender
system is facilitated in a semistructured information system where informa-
tion is stored as triples. E.g., the fact that Innsbruck is located in Austria can
be modelled by the triple (Innsbruck, locatedIn, Austria). The advantage of
such information systems is that they are very flexible as any kind of informa-
tion can be stored as a triple and as such, features structure. However, this
flexibility comes at a price as it enables users to freely choose the three com-
ponents (subject, predicate and object) of such a a triple. This may lead to
synonymous entries which are hard to handle in terms of search performance.
Hence, the goal of our recommender system is to provide recommendations
for subjects, predicates and objects aiming at encouraging the users to adhere
to a common structure while at the same time not constraining them.

1.2. Aims and Research Questions

The aim of this dissertation is to facilitate recommender systems for the cre-
ation and maintenance of structure within information systems. Therefore,
efficient, personalized algorithms for the recommendation of highly suitable
objects are developed which aim at providing a homogeneous structure of the
contained information based on already existent usage data. Hence, through
the homogeneous schema, the search performance can be improved.

In particular, these aims can be characterized by the following research ques-
tions which are addressed in this thesis:

RQ1: Can hashtag recommendations be leveraged to enhance structure in
microblog entries?

RQ2: Can structure within semistructured data be created and maintained
efficiently by content-aware recommendation mechanisms?

1.3. Contributions and Published Work

The contributions made in the course of this thesis can be divided into two
fields of research:

In the field of semistructured information systems, our approach is the
first work which facilitates a recommender system for proactively preventing

3

1. Introduction

schema proliferation in semistructured information systems. The main contri-
bution of our work lies in showing that recommender systems are capable of
ensuring a homogeneous semistructured data set. In the course of our research,
we identified different types of recommendations required for the creation of
a homogeneous data set: (i) content-aware structure recommendations, (ii)
content recommendations and semantic refinements and (iii) intelligent auto-
completion. For each of these types, we developed suitable recommendation
algorithms. These algorithms were subsequently implemented and a fully func-
tional prototype called SnoopyDB was developed which incorporates these al-
gorithms. Based on this prototype, test-user experiments were conducted for
the evaluation of the proposed algorithms. As we identified content-aware
structure recommendations as the most influential type of recommendations
in regards to the data set created, we conducted offline evaluations in order to
evaluate the performance of the recommendation algorithms based on a large
data set. The results of these evaluations were already published at multiple
international conferences. At the CTS conference (2011 International Con-
ference on Collaboration Technologies and Systems), the paper “The Snoopy
Concept: Fighting Heterogeneity in Semistructured and Collaborative Infor-
mation Systems by using Recommendations” [35] was published and was also
nominated for the best paper award. At the ACM Recommender System Con-
ference 2010, the most widely known conference on Recommender Systems,
the paper “Recommending Structure in Collaborative Semistructured Infor-
mation Systems” [117] was published. This paper describes the algorithms
underlying the SnoopyDB approach. Further details about these approaches
have been published as a poster at the ACM Hypertext Conference 2010 [36]
and at the Workshop “Grundlagen von Datenbanken 2010” organized by the
Deutsche Gesellschaft für Informatik (German computer science society) [34].
An extensive survey concerned with the different approaches dealing with the
process of creating a common structure within semistructured knowledge was
published as a book chapter [116].

In the field of hashtag recommendations for microblogs, we published the first
work concerned with the recommendation of hashtags as an aim for creating
a more homogeneous set of hashtags. The main contribution of this work is
the demonstration of the feasibility of recommendation mechanisms for the
creation of a homogeneous set of hashtags. The brevity of microblogging en-
tries and the fact that the recommendations are based on the content of the
tweet place pose special challenges in regards to the algorithms underlying the
recommender system. Therefore, we developed algorithms which are able to
cope with the brevity of tweets and the according characteristics of microblogs.
In the course of this thesis we identify string similarity measures which are
particularly suited for the recommendation task. Furthermore, we crawled
a data set containing more than 380 million tweets for the analysis of the
hashtagging behavior of Twitter users and also as a basis for the recommen-

4

1.3. Contributions and Published Work

dation process. This data was also used for the evaluation of the proposed
solution. Moreover, a framework for the recommendation of hashtags for a
given tweet was developed which incorporates the proposed algorithms for the
recommendation of hashtags. The results of this research have been published
and presented at the Workshop on Semantic Adaptive Social Web 2011 at
the 19th International Conference on User Modeling, Adaptation and Per-
sonalization. The paper’s title is “Recommending #-tags in Twitter” and it
contains the basic algorithms for the recommendation of hashtags [118]. The
optimized algorithms and a more extensive evaluation have been published in
“Using Tag Recommendations to Homogenize Folksonomies in Microblogging
Environments” at the Third International Conference on Social Informatics
2011 [119].

Besides these two fields, also contributions have been made in the field of main
memory graph storage and music recommendation. However, these works are
out of the scope of this thesis. Below all works published throughout the
course of the PhD studies are listed:

• E. Zangerle, W. Gassler, and G. Specht. Recommending Structure in
Collaborative Semistructured Information Systems. In RecSys ’10: Pro-
ceedings of the third ACM Conference on Recommender Systems, pages
141–145. ACM, New York, NY, USA, 2010.

• E. Zangerle, W. Gassler, and G. Specht. Recommending #-tags in
Twitter. In Proceedings of the Workshop on Semantic Adaptive So-
cial Web 2011 in connection with the 19th International Conference on
User Modeling, Adaptation and Personalization, UMAP 2011, pages
67–78. CEUR-WS.org, ISSN 1613-0073, Vol. 730, available online at
http://ceur-ws.org/Vol-730/paper7.pdf, urn:nbn:de:0074-730-4, 2011.

• E. Zangerle, W. Gassler, and G. Specht. Using Tag Recommendations
to Homogenize Folksonomies in Microblogging Environments. In Social
Informatics, volume 6984 of Lecture Notes in Computer Science, pages
113–126. Springer, Berlin, Heidelberg, New York, 2011.

• E. Zangerle, W. Gassler, and G. Specht. Exploiting Twitter’s Collec-
tive Knowledge for Music Recommendations. In Proceedings of the 2nd
Workshop on Making Sense of Microposts (#MSM2012): Big Things
come in Small Packages in connection with the 21st International Con-
ference on World Wide Web, 2012.

• E. Zangerle and W. Gassler. Dealing with Structure Heterogeneity in Se-
mantic Collaborative Environments. In S. Brüggemann and C. d’Amato,

5

1. Introduction

editors, Collaboration and the Semantic Web: Social Networks, Knowl-
edge Networks and Knowledge Resources, pages 1–20. IGI Publishers,
Hershey, Pennsylvania (USA), 2012.

• R. Binna, W. Gassler, E. Zangerle, D. Pacher, and G. Specht. Spider-
Store: Exploiting Main Memory for Efficient RDF Graph Representa-
tion and Fast Querying. In Proceedings of the 1st International Work-
shop on Semantic Data Management (SemData) in connection with
the 36th International Conference on Very Large Data Bases (VLDB
2010). CEUR-WS.org, ISSN 1613-0073, Vol. 637, available online at
http://ceur-ws.org/Vol-637/paper3.pdf, urn:nbn:de:0074-637-5, 2010.

• R. Binna, W. Gassler, E. Zangerle, D. Pacher, and G. Specht. Spider-
Store: A Native Main Memory Approach for Graph Storage. In Pro-
ceedings of the 23nd Workshop Grundlagen von Datenbanken. CEUR-
WS.org, ISSN 1613-0073, Vol. 733, available online at http://ceur-
ws.org/Vol-733/paper binna.pdf, urn:nbn:de:0074-733-4, 2011.

• W. Gassler and E. Zangerle. Recommendation-Based Evolvement of Dy-
namic Schemata in Semistructured Information Systems. In Proceedings
of the 22nd Workshop Grundlagen von Datenbanken. CEUR-WS.org,
ISSN 1613-0073, Vol. 581, available online at http://ceur-ws.org/Vol-
581/gvd2010 3 3.pdf, urn:nbn:de:0074-581-7, 2010.

• W. Gassler, E. Zangerle, M. Bürgler, and G. Specht. Snoopytagging:
Recommending Contextualized Tags to Increase the Quality and Quan-
tity of Meta-Information. In Proceedings of the 21st International Con-
ference Companion on World Wide Web. ACM, New York, NY, USA,
2012.

• W. Gassler, E. Zangerle, and G. Specht, editors. Proceedings of the 23rd
GI-Workshop on Grundlagen von Datenbanken. CEUR-WS.org, ISSN
1613-0073, Vol. 733, available online at http://ceur-ws.org/Vol-733/,
urn:nbn:de:0074-733-4, 2011.

• W. Gassler, E. Zangerle, and G. Specht. The Snoopy Concept: Fighting
Heterogeneity in Semistructured and Collaborative Information Systems
by using Recommendations. In Proceedings of the 2011 International
Conference on Collaboration Technologies and Systems (CTS 2011),
pages 61–68. IEEE Computer Society, Piscataway, NJ, USA, 2011.

• W. Gassler, E. Zangerle, M. Tschuggnall, and G. Specht. SnoopyDB:
Narrowing the Gap between Structured and Unstructured Information

6

1.4. Methodology

using Recommendations. In HT’10, Proceedings of the 21st ACM Con-
ference on Hypertext and Hypermedia, pages 271–272, 2010.

• A. Larcher, E. Zangerle, W. Gassler, and G. Specht. Key Recommenda-
tions for Infoboxes in Wikipedia. Website of the 22nd ACM Conference
on Hypertext and Hypermedia. Poster Presentation, available online at
http://www.ht2011.org, 2011.

1.4. Methodology

The research presented in this thesis was conducted following a research
methodology which is split into four steps and is applied to each of the research
questions:

• Literature Review: The first step is a thorough review of literature
related to the according research question. For the field of semistruc-
tured information systems, we review work that was published in the
fields of collaborative information systems, collaboratively created data
sets, structure extraction and tag recommendations. As for the mi-
croblogging environment, we review literature related to microblogging,
hashtags, recommender systems based on microblogging and social and
behavioural phenomena in the context of microblogging platforms. The
review of publications related with tag recommendations (already con-
ducted for the semistructured information system research) is also ap-
plicable for microblogging data.

• Development of Recommendation Algorithms: In this step, suit-
able recommendation algorithms are designed. The findings of the liter-
ature review are transferred to the context of microblogs and semistruc-
tured data and adapted to the specific needs of these two fields. The
algorithms are evaluated based on prototypical implementations and the
findings of the evaluations are used to iteratively improve the algorithms
and hence, improve the quality of the recommendations.

• Implementation of a Prototype: For each of the proposed ap-
proaches, a proof-of-concept implementation was done in order to be
able to (i) proof the suitability of the proposed recommendation algo-
rithms and (ii) allow for an iterative improvement of the algorithms.

• Evaluation of the Approach: Based on the previously described pro-
totypes, each approach was thoroughly evaluated by either user-tests
(online evaluation) or by automatically computing evaluation metrics

7

1. Introduction

(offline evaluation). The findings of these evaluations are directly used
for a further optimization of the designed algorithms and hence, are also
part of the iterative development cycle.

These steps are conducted for both of the research questions, the research
within both of these fields (microblogging and semistructred information sys-
tems) contributed to each another. E.g., the co-occurrence approach facili-
tated for the semistructured recommender systems was partly also used for
the recommendation of hashtags for microblogging platforms and the ranking
of the according recommendations. Furthermore, knowledge gained during the
course of designing the algorithms for semistructured data was transferred to
the algorithms for the microblogging environment.

1.5. Thesis Outline

This dissertation is structured as follows. Chapter 2 features an introduction
to recommender systems and describes the aims of such systems and subse-
quently the different approaches for the recommendation of items. In Chapter
3, we present how Recommender Systems can be used for microblogging ser-
vices in regards of providing suitable recommendations for hashtags aiming
at creating a more homogeneous hashtag vocabulary. Chapter 4 is concerned
with the facilitation of recommender systems for information systems based
on the semistructured storage paradigm. In particular, this chapter describes
how recommender systems can be facilitated for the creation and maintenance
of a common and uniform structure within a multi-user semistructured infor-
mation system. Chapter 5 concludes this thesis and discusses future work.

8

CHAPTER 2

Recommender Systems

Generally, recommender systems are concerned with recommending certain
suitable items to the users of the system [87] and have been a popular re-
search topic for roughly the last two decades. Due to the uprising of the web,
social media platforms and the increasingly collaborative nature of the web,
recommender systems have gained tremendous popularity in both academia
and industry.

The first research project proposing a recommender system was facilitated
within the Tapestry system [38]. This system was an alternative email system
which provided facilities to filter (and search) documents attached to these
emails based on annotations of other users who have already studied and
subsequently annotated these documents. The authors called the approach
underlying the Tapestry system “Collaborative Filtering” as the filtering of
documents is based on the collaborative effort of annotating the documents
accomplished by all participating users. Since these first steps in this field, rec-
ommender systems have evolved into one of the most dominant paradigms on
the web as the range of applications of recommender systems spans from the
recommendation of products to the recommendation of music tracks, friends
on social network platforms or even people on online dating services. Recom-

2. Recommender Systems

mender systems are of high value for industry and commerce. Thus, many
recommender systems evolved in industrial settings. On the Amazon web-
site1 users are provided with recommendations for books or other products
they might be interested in based on their previous purchases, products they
showed interest in or based on the profiles of other similar users [68]. Amazon
features a huge recommender system in terms of both recommendable items
and the number of users of the system.

A second mayor application of recommender system which evolved especially
during the last few years is facilitating recommender systems as a substitute
for traditional, keyword-based web search in terms of an information filter
for online data. Recommender systems hence contribute to coping with the
information overload problem [88]. The customized recommendation of news
[57, 84] is a popular example for such a recommender system as the sheer
amount of news available on the web is not easily searched for news articles of
interest for a particular user. In such a system, news items are filtered based
on the user’s preferences and her social profile.

In the following section, recommender systems and their aims are firstly for-
mally defined and secondly, the different types of recommender systems are
presented.

2.1. Aim of Recommender Systems

The basic aim of a recommender system is to provide its users with a set
of personalized, suitable recommendations for items. As input for such a
recommender system, three main sources can be exploited: (i) the set of users
of the system and their profile describing their preferences and characteristics,
(ii) the set of items available for recommendation and their respective features
and metadata and (iii) the set of user-item relations deduced from the two
previous sources. In order to assess a user’s preferences, either explicit or
implicit feedback of this particular user may be used to create a user profile
describing her preferences. Explicit feedback is gathered from user-ratings for
items, like the 5-star rating system for books and other items on Amazon
which are a very good indicator for whether a certain user liked a certain item
or not. Implicit feedback relies on more subtle, mostly behavioral information
as the user does not have to enter feedback explicitly. The fact that a user
e.g. purchased or bookmarked a certain item or simply clicked the description
of a certain item can be collected and used as implicit feedback.

1http://www.amazon.com

10

2.1. Aim of Recommender Systems

A recommendation task can formally be defined as follows2 [3]:

Let U be a set of all users of a system and let I be the set of all items within
the system (each of these items may be recommended). The utility function
s(u, i) can then be used to estimate how useful and suitable a certain item i ∈ I
might be for a certain user u ∈ U . The function is defined as s : U × I → R
whereR is a non-negative integer or real number (mostly within a given range)
representing a utility value. It is important to note that s(u, i) is not available
for each and every pair (u, i) (e.g., due to information sparsity in the case of a
new user who has not specified any preferences yet). Therefore, only a subset
of the U × I space is specified. The missing utility values for items the user
has not actively or passively rated yet have to be predicted.

Based on these definitions, Mobasher [74] specifies the profile of a certain user
u ∈ U as an n-dimensional vector of ordered pairs (n being the number of
items in I), where the utility function s assigns a utility value to items i ∈ I
for each user u (see Equation 2.1).

u(n) = 〈(i1, s(u, i1)), (i2, s(u, i2)), ..., (in, s(u, in))〉 (2.1)

In the case of a system with explicit ratings, the function s(u, i) can be seen as
a rating function, according to Mobasher. I.e. all items the user has actively
rated feature the item’s rating as the utility value for the corresponding item.
Thus, the user is characterized by her preferences.

Mobasher describes the set of all user profiles as UP, the set of n-dimensional
user profile vectors (which may be empty in the launch phase of the system).
The task of a recommender system can then be defined as a mapping of users
U to a set of recommended items P(I) which are computed based on a subset
of other user profiles P(UP). The recommendation function REC is thus of
the following form:

REC : P(UP)× U → P(I) (2.2)

The set of all user profiles forms a user-item matrix [s(uk, ij)]m×n, where the
entries of the m × n matrix are the utility values for the respective items, as
can be seen in Example 2.1. This matrix shows a user-item matrix for explicit
user feedback in a 0 to 5 stars rating system. In contrast, a user-item matrix
originating from implicit feedback which features only boolean values (e.g., for
a user having visited a certain product description page or not) can be seen

2This definition is aimed at collaborative filtering tasks. However, the tasks of other recom-
mender systems can be defined analogously.

11

2. Recommender Systems

i1 i2 in−1 in

u1 1 4
u2 2 3
... 3 2
... 0 5
um−1 0 5 1
um 2 0

Example 2.1.: User-item Matrix for Explicit User Feedback

i1 i2 in−1 in

u1 1 1
u2 1 1
... 1 1
... 1 1
um−1 1 1 1
um 1 1

Example 2.2.: User-item Matrix for Implicit User Feedback

in Equation 2.23. As can be seen, such matrices are typically very sparse as it
is hardly possible for a user on Amazon to visit or rate all items available.

Based on these definitions, the recommendation task for a certain user uk can
be formalized as shown in Equation 2.3, where up is a subset of user profiles
relevant for the recommendation task. From this equation it becomes clear
that the task is to find items which this particular user has not previously
rated aiming at maximizing the utility value for these items according to some
utility function s. The function arg max is used to determine the maximum
utility value for the given items.

REC(up, uk) = { i | s(uk, i) = arg maxi∈I s(uk, i)} (2.3)

Hence, the recommendation task aims at finding items which reach a maximum
utility value, i.e. to find the most suitable and useful items for a certain user
which have not been rated yet by the according user. Mostly, the top-x most
useful items are finally recommended to the user.

3It is important to note that implicit feedback may also feature non-boolean values, e.g.
when using the amount of time a certain user spent on a certain product’s page as implicit
feedback.

12

2.3. Collaborative Filtering

2.2. Overview

In order to fulfill the previously described recommendation task, various ap-
proaches for the recommendation of items have been developed throughout
the last two decades. The algorithms and approaches underlying typical rec-
ommender systems are classified into the following categories (as in [17, 88]):

• Collaborative filtering

• Content-based recommender systems

• Demographic recommender systems

• Knowledge-based recommender systems

• Hybrid recommender systems

Adomavicius et al. [3] propose three categories of recommender systems,
namely collaborative filtering, content-based and hybrid approaches. Jan-
nach et al. [51] omit the demographic approach. However, in order to provide
a complete overview about the different recommendation methods, we dis-
tinguish between five different recommendation approaches as listed above.
In the following sections, these different approaches aiming at recommending
items to a specific user are introduced. As collaborative filtering is by far the
most popular approach, it is discussed in more detail.

2.3. Collaborative Filtering

Collaborative filtering (CF) aims at recommending items to a certain user
based on her past actions (purchase of a certain product, consumption of
certain music tracks, explicit rating of certain items, etc.) and past actions of
other, similar users. The term collaborative filtering was first introduced in
1992 by Goldberg et al. [38] for Tapestry, which was used to collaboratively
filter attachments of corporate emails.

Shardanand and Maes [98] state that a collaborative filtering system is an
automation of the word-of-mouth principle. This principle basically describes
that recommendations are computed based on items which were rated by other
users who have shown similar preferences. Hence, CF techniques aim at rec-
ommending items based on the user profiles of other users as users having
shown similar interests in the past may be a good source for recommenda-
tions. CF computation is based on a matrix consisting of all users, items and
the users’ ratings for items. Theses matrices are referred to as user-item ma-
trices in the course of this thesis. Such a matrix may contain either explicit or

13

2. Recommender Systems

implicit rating information. Examples for user-item matrices have been shown
in Example 2.1 resp. Example 2.2.

In principle, two approaches for collaborative filtering can be distinguished
[3]: memory-based and model-based approaches. Both of these approaches
are described in the next sections.

2.3.1. Memory-Based CF

Memory-based approaches for CF make use of the entire user-item matrix
and recommendations are computed directly based on the information avail-
able from this matrix. In general, two types of recommendation tasks can
be computed: user-based filtering and item-based filtering. User-based filter-
ing aims at matching the current user to other users in the matrix, whose
preferences are used to make predictions about the possible preferences of the
current user. By extracting all new items from the most similar users, a set of
recommendations is created which is then ranked and presented to the user.
[3] defines the task of memory-based methods as predicting the rating for a
certain item by aggregating the ratings of the top-k most similar users within
the system (the k-nearest neighbours, kNN). Mostly, a weighted aggregation
function (e.g., the average of all ratings weighted by the similarity of the two
users) is applied for the computation of the rating predictions. Subsequently,
the items with the highest predicted ratings are recommended. As for the
similarity of users, [105] and [14] state that mostly either a correlation-based
similarity (e.g., Pearson correlation coefficient) or a cosine-similarity measure
based on user-profile vectors is applied. As for item-based filtering, the goal
is to find the most similar items based on the user profiles of the users who
rated these items [94]. The most similar items are ranked and subsequently
provided to the user. Two items are similar if the same users have rated these
items similarly or implicitly showed interest in these two items. Again, the
similarities are computed by either Pearson correlation coefficient or the cosine
similarity of the according vectors.

2.3.2. Model-Based CF

In contrast to memory-based CF, model-based CF aims at learning a predict-
ing model for a certain user based on a user-item matrix. This learning of
a model based on training data is done offline. At the time of computation
of recommendations, the precomputed model is applied. As for the models
underlying the computation, Breese et al. [14] propose two different proba-
bilistic models: cluster models and Bayesian networks. The cluster model aims
at computing a probability value assessing how likely it is that a user belongs
to a certain cluster or class of users. Based on this probabilistic attribution

14

2.4. Content-based Recommender Systems

to a certain class (featuring certain common preferences), recommendations
are computed. The Bayesian network approach models the CF problem as
a Bayesian network where each node represents an item and the according
preferences. Based on this network, a Bayesian network is learned in order to
be able to predict preferences for certain items.

Memory-based CF is a computationally very intensive task as this approach
computes recommendations based on the whole matrix. The scalability of such
approaches is somewhat limited as the size of the underlying matrix grows with
the number of users and items within the system. In contrast, model-based CF
are better able to cope with scalability issues as models are trained once and
then, these models can be applied. However, these models require a training
phase ex ante which is not the case for memory-based CF.

The main problem with which both CF approaches have to cope with is spar-
sity of data. As most users traditionally only have rated a very small fraction
of all available items, the user-item matrix is traditionally immensely sparse.
Especially during the initial phase of a system where hardly any user ratings
are available, the quality of the recommendations due to the lack of available
information for the computation of recommendations is not satisfying. This
is also the case for new items which have not been rated at all and users who
have not (implicitly or explicitly) stated any preferences yet. This problem is
also referred to as the cold-start problem [51].

2.4. Content-based Recommender Systems

Content-based recommender systems [3, 27, 51, 82, 88] are focused on rec-
ommending similar items. A content-based recommender system computes
recommendations by finding items which are similar to the item preferences of
the user (traditionally the preferences are modelled in a user profile). Schafer
et al. call this item-to-item correlation [95]. As for the profile of the user, the
items a user previously liked or rated are used to build a profile for the user
which represents her interests and preferences. The actual recommendations
are based solely on the features of the items and the according similarity of
items (in contrast to item-based collaborative filtering where user profiles are
used to determine the similarity of items). For a book recommender system,
such features may be the genre, the author or the topic of the book. For the
computation of similarity, different approaches have been facilitated in the
past. A very simple approach is to use the keywords of the features associated
to certain items and compute a set-based similarity coefficient of the sets (e.g.,
the Dice coefficient) of keywords for items in order to compute the similarity
of two items. A popular approach for content-based recommender system is

15

2. Recommender Systems

modelling the features of two items as vectors where the components of the
vector represent the item’s features (the components of the components may
also be weighted in order to represent the importance of certain features).
The similarity of two items is computed by determining the cosine of the an-
gle between these two feature vectors. One example is the Fab system [9],
which aims at recommending websites to users. It uses the most important
words representing the according websites as feature vectors which are used
to compute the similarity of the according websites.

The main advantage of content-based recommender systems is that these ap-
proaches do not have to cope with the cold-start problem as the features of
the recommendable items are well-known. However, ratings and preferences of
other users within the system form a valuable source of relevant information
which is not exploited at all in content-based recommender systems.

2.5. Demographic Recommender Systems

Demographic recommender systems make use of demographic data about its
users, like age, sex, marital status etc. Such demographic information can be
exploited to create classes of users for which recommendations can be com-
puted. The work by Pazzani [83] describes a framework which aims at rec-
ommending websites to users. Besides both content- and collaborative recom-
mendation approaches, also a demographic recommender system is presented
in this work. This recommender system attempts to extract demographic
features (in this case age, sex and area code) from the user’s websites and
leverage this information for creating relations between items (websites) and
classes of users, which are formed based on their demographic features. Based
on these relations, recommendations are computed. However, demographic
recommender systems have not been very popular in research as demographic
classes only can provide a rough personalization of recommendations.

2.6. Knowledge-based Recommender Systems

Knowledge-based recommender systems [17, 51, 88] are focused on complex
user needs and how to find items matching these user needs. The more complex
a user need is, the less likely it is to find other like-minded users in order to
compute recommendations based on their previous preferences and actions.
Therefore, knowledge-based recommender systems do not rely on other user’s
experiences and actions, they are rather based on a reasoning and inference
task based on constraints, patterns and rules. Also, functional knowledge in
regards to how certain items meet the user’s requirements is used. Rules and
patterns are defined in advance by a domain expert and subsequently exploited

16

2.7. Hybrid Recommender Systems

for recommendations [95]. Knowledge-based recommender systems are mostly
directly related to conversationally eliciting the user’s needs and preferences.
This allows for narrowing down the number of items corresponding to the
user’s preferences similar to facet-based search. This can also be achieved by
actively asking the user for his preferences in regards to certain features of
the desired item. Consider a car recommender system. People do not buy
cars very often and hence, information about the need of a certain user is
sparse and thus, interaction to elicit her preferences is required. Based on
this gained knowledge, rules, patterns and constraints are applied in order to
compute suitable recommendations.

Knowledge-based recommender systems are mostly used to complement the
shortcomings of another type of a recommender system. E.g., for a content-
based recommender system or CF a knowledge-based recommender system
may help to deal with the cold-start problem as no previous user actions have
to be present in the system in order to be able to compute recommendations.
However, the creation and formulation of the rules, patterns and constraints
underlying such a recommender system is very expensive and the knowledge of
a domain expert is required. Furthermore, such systems are rather inflexible
and static as changes in regards to recommendable items require a previous
(re)definition of rules, patterns and constraints.

2.7. Hybrid Recommender Systems

Based on the recommender system approaches introduced in Sections 2.3–
2.5, hybrid recommender systems facilitate various different recommender ap-
proaches and combine these to one single, hybrid approach. The main goal
of such a combination is to exploit the advantages of the different approaches
while at the same time avoiding the disadvantages of a certain approach by
the advantages of another. If e.g., no profile information about a certain user
is present in a recommender system based on collaborative filtering, demo-
graphic approaches can be used to provide a basic profile for the user until the
user provided the required information by e.g. rating certain items. In [100],
a hybrid approach of collaborative filtering and content-based filtering is used
to provide personalized hypermedia content (interlinked text, images, audios
or videos) to the users of the system. In this system, the utility value of items
is defined by the intersection of the Gaussian curves presenting the user’s pref-
erences and the characteristics of a certain item. An extensive survey about
hybrid recommender systems is provided by Burke [17].

17

2. Recommender Systems

2.8. Conclusion

In this section we introduced the research area of recommender systems.
Therefore, we first formalized the task of a recommender systems. Subse-
quently, the state-of-the-art approaches for the computation of recommenda-
tions were discussed.

18

CHAPTER 3

Microblogs

Microblogging services have become immensely important throughout the last
years as they allow users to easily share their thoughts to the public. In
general, microblogs are a special form of blogs as microblog messages are
shorter than traditional blog posts and mostly feature messages of a maximum
of 140 characters. These blog messages are subsequently available for the
public. The most successful and popular microblogging platform is Twitter1

which currently serves more than 140 million active users who publish about
340 million2 posts each day. The motivation of users to participate in such
platforms are manifold [53]. People make use of such services to stay in touch
with friends, to follow news and latest events, to gather information or to
simply tell the world what they are up to. Hence, Twitter has also become an
important social network. As of March 2012, Twitter currently is the third
most successful social network in regards to total visits in the U.S.3. Due to
the high volume of data published each day, microblogging platforms also have

1http://www.twitter.com

2https://business.twitter.com/en/basics/what-is-twitter/

3http://www.dreamgrow.com/top-10-social-networking-sites-by-market-share-of-

visits-march-2012/

3. Microblogs

become an important source of information. E.g., when dealing with a certain
problem, the Twitter community is often used for finding solutions by simply
searching for answers or posting questions to the community. Furthermore,
Twitter is an important news medium where news are spread at a very high
pace [61].

Despite the huge volume of tweets posted, this data hardly features structure
in terms of categorization of tweets. The only structural information available
are so-called hashtags which are a means to add simple keywords as a part of
the tweet. However, as hashtags may be chosen freely by the users, the hashtag
vocabulary is heterogeneous. Searches for hashtags in order to find tweets
concerning a certain topic may result in a search result featuring low recall due
to this heterogeneity of hashtags. Therefore, our work aims at providing users
with recommendations for hashtags and therefore add structure to microblog
entries aiming at a more homogeneous set of hashtags enabling better search
performance.

In this chapter, we present our approach for the creation of structure facilitated
by recommendations in microblogging environments. Therefore, we introduce
the most popular microblogging platform Twitter which is used as a showcase
example for our approach in Section 1. In Section 2, we analyse the data
sets underlying both the recommendation algorithm and also the evaluation
thereof. Section 3 features information about hashtags, their usage and their
characteristics. Subsequently we present the proposed algorithms for the fa-
cilitation of recommendations for the creation of structure in Section 4. We
present and elaborate on the evaluation of the proposed approach in Section
5. Section 6 contains a description of the architecture of the recommender sys-
tem. Important related work and related approaches are described in Section
7. Section 8 features future work and concludes this chapter.

3.1. Background: Twitter

The following section introduces the most popular microblogging platform
Twitter and its features. Besides Twitter, also other microblogging services
like Jaiku, Pownce and Google Buzz were founded. However, as of January
2012, all of these services have been shut down. Identi.ca is a microblogging
service which is very similar to Twitter, however it is Open Source and far
less widely used as Twitter. Lately, also enterprise microblogging systems are
increasingly deployed [89].

Generally, Twitter was founded in 2006 aiming at providing a microblogging
service for messages of a maximum length of 140 characters. Within the last
years, Twitter gained massive popularity within social networking services and

20

3.1. Background: Twitter

reached up to 140 million active users4. The number of users steadily increases
and so does the number of tweets sent per day. As of 2011, Twitter was faced
with usage peaks of more than 8,000 tweets per second5 and a total amount
of one billion tweets per three days6.

As for the motivations of users to actively participate in the Twitter network,
Java et al. [53] identified the following intentions of users:

• Daily chatter : The Twitter platform serves as a means to keep in touch
with friends and keep them updated. According to Java et al., this is
the main motivation for users to participate in the Twitter network.

• Conversations: Twitter is also used to communicate with certain users
in direct conversations via the mention-functionality (see below for a
description of this functionality).

• Information sharing : Users also use Twitter to propagate information
(mostly in the form of posted URLs).

• News reporting : Twitter is also facilitated to propagate news or to com-
ment on news items.

Similarly, Naaman et al. [76] found that Twitter is mostly used for information
sharing, posting opinions (or complaints), statements and random thoughts
and—being to most dominant content category of the sampled tweets—“me
now” tweets, which basically report on the status of the user (e.g., if the user
tweets that she is tired or on her way home). Interestingly, the authors found
that in the case of mobile-posted tweets, 51% are “me now” tweets whereas
when the tweet is posted non-mobile,s 37% are “me now” tweets. Based on
these findings, the tweeters are clustered into two clusters: so-called informers
and meformers. Users of the former cluster (20% of all users) aim at spreading
information whereas users of second cluster (80% of all users) mostly tweet
about themselves and are more self-centered.

The Twitter microblogging platform provides a variety of functions to its users.
These functionalities and characteristics are briefly explained in the following
section.

4https://business.twitter.com/en/basics/what-is-twitter/

5http://yearinreview.twitter.com/de/tps.html

6http://blog.twitter.com/2012/03/twitter-turns-six.html

21

3. Microblogs

Tweet

A tweet generally is a short message which is posted on the Twitter platform.
The maximum length of such a message is 140 characters. The tweet is then
published on the user’s personal timeline (a chronological list of the most recent
tweets of the user and his followees (see below)) and automatically broadcasted
to all of the user’s followers (see below for a description of the follower-followee-
principle). Below an exemplary tweet is shown in which Barack Obama thanks
all his voters for being re-elected.

This happened because of you. Thank you.

posted by @BarackObama on 2012/11/07

Follower

The concept of followers is a crucial functionality on the Twitter platform. It
allows users to “follow” other users which means that if user A follows user B,
all tweets of user B are shown in the timeline of user A. In this relationship,
user A is the follower and user B is the followee. Such a follower-followee
connection is unidirectional which means that if user A follows user B, this
does not necessarily imply that also user B follows user A. Moreover, following
a certain user does not require permission to do so. As users can freely decide
which users to follow, they can follow other users based on their interests and
thus, receive all the tweets of users she is interested in.

According to the findings of Weng et al. in [113], the motivation of users to
follow a certain user is a shared topic interest between the follower and the
followee. Additionally, the authors state that a followee following back a fol-
lower is also based on the fact that both users share the same interests. The
authors showed that there is a homophily between followers and followees.
The concept of homophily basically implies that people tend to be part of
social networks in which the other members are similar to the user, e.g. in
regards to attitudes, behaviour, interests, education, sex, gender or race [71].
According to Weng et al., 72.4% of all users follow back more than 80% of all
of their followers (evaluated on a data set of 1,021,039 tweets posted by the
top-1000 Singapore-based Twitter users). More interestingly, Kwak et al. [60]
found that 77.9% of all relations on Twitter are unidirectional (in a data set
of 1.47 billion follow relations of 2010). Additionally, Java et al. [53] identi-
fied three categories of Twitter users in regards to their following-behaviour:
information sources, friends and information seekers. Information sources are
users who act as hubs and have a large number of followers (typically signif-
icantly more followers than followees) and tweet regularly. Friends are users
who have a relatively similar number of followers and followees as they mainly

22

3.1. Background: Twitter

are connected in reciprocal relationships. Information seekers are users who
follow a large number of users, however only tweet rarely. A very similar
categorization has also been observed in [59], where information sources are
named broadcasters and friends are called acquaintances. However, as a third
category, the authors add miscreants (evangelists) which are users who follow
and contact a very high number of users aiming at getting attention and new
followers.

User’s Timeline

A user’s timeline is a list of all tweets of a user and the users she follows. The
timeline is a chronological stream of all these tweets and is aimed at giving
users an immediate overview. A screenshot of the timeline of the user @evaz23
is shown in Figure 3.1.

Replies and Mentions

A reply message is a tweet which is directed to another specific user. This is
realized by starting the tweet with the recipient’s username which is preceded
by a @-sign. This way, (public) directed conversations can be facilitated.
Within Twitter messages, users can similarly be mentioned by simply stating
their user name preceded by a @-sign. Hence, mentioning users is equal to
replying to a certain tweet. In the example below, @bellogin sends a direct
reply to the user @tototingle.

@tototingle here you have it,it’s a comparison of

evaluation methodologies, using precision & ndcg:

ir.ii.uam.es/~alejandro/201

posted by @abellogin on 2011/09/21

Honeycutt and Herring [46] showed that the @-notation is primarily used for
addressivity, i.e. to point messages to a certain user and hence, for conversa-
tional tweets. In the studies Honeycutt and Herring conducted, 90.96% of all
@-usages were used for addressivity purposes. Only 5.43% of all @-signs were
used for referencing and mentioning a certain user who is not necessarily taking
part in the conversation. Further usages of @-signs include the specification
of locations (e.g., “I’m @home”) or as a part of emoticons.

Retweet (RT)

The retweet functionality enables users to simply (re-)broadcast a tweet of
another user. Such a message is called a retweet and acts like a forward of a
tweet to all followers of the retweeting user. Basically, the original messages

23

3. Microblogs

Figure 3.1.: A User’s Timeline

is copied and sent again. Retweeted messages are responsible for the vast
speed in which messages and news are spread on the Twitter network [61].
Such retweets can be recognized by the prefix “RT” (also tweets featuring the
keywords rt, retweeted, via, etc. are recognized as retweets) followed by the
username of the original author of the tweet, like RT @gatesfoundation in
the following example retweet where @timoreilly retweets the tweet originally
posted by @gatesfoundation.

24

3.1. Background: Twitter

RT @gatesfoundation: Learn. Teach. Share. YouTube

Teachers--A new tool to help #teachers in the

classroom: http://t.co/Wj8udZYZ #edtech

retweeted by @timoreilly on 2011/09/22

Boyd et al. inspected the retweeting behaviour of users in [13]. They state
that users make use of retweets as a form of both information diffusion and
also the participation in a diffuse conversation. As such, users retweet in
order to engage with others about certain topics. The authors found that
retweeting users fall into two categories: preservers and adapters. Preservers
are users who retweet messages without editing the original message whereas
adapters edit a message before retweeting it. The most important finding of
this paper is the motivation of users behind retweeting certain tweets, which
are manifold:

• Users make use of retweets to inform an audience about a certain topic.

• Retweets are also used to acknowledge a certain tweet or to send a sign
of agreement in response to a certain tweet.

• Retweets may also be performed as an action of loyalty or friendship.

• Another—more self-centered reason—for a certain user to retweet a cer-
tain tweet is to make herself more visible to the audience.

Metaxas and Mustafaraj [75] analysed political tweets and found that Twitter
users are more likely to retweet a tweet from a politically like-minded use. In
particular, in their data set 95% of all retweets of tweets originally tweeted
by liberal were sent by liberal users. 99.10% of all tweets originally posted by
conservatives were retweeted by conservative users.

Boyd et al. [13] also found that due to the constraint that a tweet can only
hold 140 characters, different patterns of shortening a retweeted message in
order to adhere to the maximum length of a tweet, are facilitated. Many users
simply delete certain characters. The disemvoweling (vowels are removed from
messages) of tweets is also very popular. However, the main method to shorten
tweets is the removal of whole words.

Private Message

Besides the public timeline containing all public tweets, Twitter also allows
for sending private messages. Such messages can be sent to users who are
followers or followees of the user and are not accessible to other users.

25

3. Microblogs

Hashtags

Hashtags are a way for users to categorize their tweets as they allow for a
specification of keywords, topics and categories for a given tweet. Hashtags
are preceded by a hash sign (#) followed by an arbitrary combination of char-
acters, e.g., the hashtag #egypt was used for tweets related to the uprise and
protests in Egypt in early 2011. Another example is the hashtag used for
tweets concerning the CIKM conference 20117 is #cikm2011. All tweets con-
taining this hashtag are supposedly concerned with this conference. Therefore,
when using the hashtag as a search term, tweets about this conference (in par-
ticular, those tweets which have been provided with the according hashtag),
can be detected and related conversations can be followed. Such a search can
be seen as an additional, dynamic timeline. In addition to the provided search
capabilities, hashtags are a simple means for the creation of loosely connected
communities. This means that hashtags cannot only be used passively as a
consumer of tweets concerning e.g., the CIKM conference, but also can be
used actively to participate in discussions evolving around the conference by
specifying the CIKM hashtag in tweets concerning the conference. This way,
ad-hoc communities are created implicitly as the group or community does
not have to be created or formed manually it rather is a loosely coupled set
of Twitter users. They consume and take part in a stream of conversation
concerned with a certain topic which is solely based on the fact that all these
users incorporate the same hashtag in their tweets. Still, all tweets contain-
ing a certain hashtag posted by a certain user are broadcasted to all of her
followers.

Hashtags may be located at any position within the tweet. Generally, the
Twitter community established two ways of using hashtags as a means for
categorizing a tweet:

• As a part of the text where one or more words of the actual tweet content
are simply preceded by a hash sign. E.g., in the following tweet, the
hashtag #cikm2011 is also part of the sentence and hence, less space is
used as opposed to additionally specifying hashtags at the end of the
tweet.

Only two weeks to go before the end of the #cikm2011

regular bird registration period.

posted by @CIKM2011 on 2011/09/15

7ACM Conference on Information and Knowledge Management: http://www.cikm2011.org/

26

3.2. Twitter Data Set

• Hashtags can also be added loosely at the end of the tweet where the
hashtag is not directly related to the sentences featured in the tweet but
rather added as an additional keyword. In the example tweet below, the
keywords “roma”, “nosql” and “ruby” are specified for the tweet.

ROMA User-Customizable NoSQL Database in Ruby

http://t.co/syJfNAHX #roma #nosql #ruby

posted by @nosqlweekly on 2012/02/15

Further details about hashtag characteristics and their usage can be found
in Section 3.3, especially in regards to the heterogeneity of the hashtagging
vocabulary and the subsequent need for a homogenization the set of hashtags
used on Twitter.

Lists

Lists are an additional way of organizing message streams of other users which
was introduced in 2009. A user can organize other users in lists which basically
are aggregations of users who have something in common, i.e. all users of
a certain list tweet about sports. The difference between simply following
certain users and the addition of users to a list is that the messages of users
contained in a list are not shown within the timeline. This way, the messages
broadcasted by users within a list are only shown on demand, as soon as the
list is clicked on. Furthermore, it is not necessary to follow users within the
lists, the addition of users to a list is independent of the follower-followee
connection. Also, lists may serve as a starting point for the classification of
users as shown in [54] where the authors propose to characterize users based
on the annotations used for the lists the users are contained in.

3.2. Twitter Data Set

This section describes the creation method and the most important features
of the data set which serves as the basis for several different tasks in the
course of our research. The data set is first used to analyse the hashtagging
behaviour of users. More importantly, the data set serves as the basis for the
recommendation of hashtags as it is exploited for the computation of hashtag
recommendations. Furthermore, the data set also provides the corpus of tweets
which was used for the evaluation of the proposed approach.

27

3. Microblogs

3.2.1. Data Set Creation

For the creation of the underlying data set, we crawled Twitter over eleven
months in order to be able to create a sufficiently large data set. Generally,
all tweets within the data set were obtained via the Twitter API8 which is
publicly available and provides methods enabling users to access Twitter data.
In particular, the Twitter Streaming API9 is used to gather a fraction of the
public user stream of tweets. This gathered data is nearly real-time data.
Generally, the Streaming API provides three different levels of access to tweets.
These are named “Spritzer”, “Gardenhose” and “Firehose”. These three hoses
differ in the volume of data which can be transferred. The entry level, Spritzer,
allows for crawling roughly 1% of all public messages of users. When using
Gardenhose, 10% of the public messages can be obtained and Firehose provides
access to all public tweets. However, only the Spritzer is freely available to the
public10 and hence, it is the access level we were forced to use for the crawling
of our data set.

For the creation of the Twitter data set, we used the statuses/sample API
method which returns a stream of random sample of all public tweets as JSON
objects. This API method allows for gathering a diverse, representative and
adequate sample of tweets on Twitter. This method returns tweets as JSON
objects which also contain metadata concerning the tweet, like information
about the user, her profile and the content of the tweet itself. I.e. the JSON
object includes information about the hashtags and the position of the hashtag
within the tweet. An example JSON object of a tweet retrieved via this API
can be seen in Listing A.1 in Appendix A.

Being forced to rely on the Spritzer Access level implies that the crawling of
tweets is subject to restrictions regarding the volume of data retrievable via
the API. The fact that on average only 12.84% of all tweets within the data
sets contain hashtags at all additionally reduces the amount of crawlable data
considering that only tweets which contain at least one hashtag are valuable for
this data set. This is a severe constraint in regards of the crawling capabilities.
In comparison to the total amount of tweets posted per day, this is a relatively
small sample. However, due to the fact that the tweets returned by the API are
randomly chosen, we rely on this sample to be representative and diverse.

As for the implementation of the crawling mechanisms, the crawler itself was
implemented in PHP and all gathered tweets are instantly stored to the file

8https://dev.twitter.com/

9https://dev.twitter.com/docs/streaming-api/methods

10As of March 2012, the social media provider GNIP (http://gnip.com/) offered a stream of
10% of all tweets for $5,000 per month.

28

3.2. Twitter Data Set

system. After having cleaned the data (e.g., from already deleted tweets which
are still delivered via the API but do not feature any valuable information any
more), the tweets are persistently stored to a database periodically.

3.2.2. General Aspects

For the presented data set, tweets were crawled between June 7th 2011 and
May 28th 2012. In total, we were able to retrieve 386,917,626 tweets (871 GB
of data) via the Twitter API. The most important facts of the crawled data
set are listed in Table 3.1.

Characteristic Value Percentage

Crawled messages total 386,917,626 100%

Messages containing one or more hashtags 49,696,615 12.84%

Messages containing no hashtags 337,221,011 87.16%

Retweets 67,995,905 17.57%

Retweets containing one or more hashtags 14,395,494 3.72%

Direct messages, mentions 212,651,505 54.96%

Table 3.1.: Overview Tweets in Data Set

As can be seen in Table 3.1, 49,696,615 messages out of a total of 386,917,626
crawled tweets contain hashtags at all which are approximately 12.84% of
all tweets. This relatively low percentage already signifies that hashtags are
not well-adapted by Twitter users. 87.16% of all tweets do not feature any
information about the category or content in regards to hashtags. Our analysis
also showed that 17.57% of all messages are retweets (retweeted messages are
later on eliminated from the data set as these would bias the evaluation results,
cf. Section 3.5.2). Furthermore, 54.96% of the tweets contain one or more
mentions of specific users. In this context it is important to note that these
characteristics are not necessarily mutually exclusive as retweeted messages
may also contain hashtags and user mentions (and vice versa). In total 3.72%
of all messages are retweets which also contain at least one hashtag.

Table 3.2 summarizes the main characteristics of hashtags within the data set.
In total, the data set features 7,777,194 distinct hashtags, the total number of
hashtag occurrences within our data set amounts to 65,612,803. This marks an
average number of 1.32 hashtags per tweet within the set of tweets containing
at least one hashtag. As for the whole 386 million data set, the average number
of hashtags per message is 0.16. Moreover, the hashtags featured in the data
set are used 10.34 times on average whereas the median of the occurrences of

29

3. Microblogs

Characteristic Value

Messages containing one or more hashtags 49,696,615

Hashtags usages total 65,612,803

Average number of hashtags per message 0.16

Average number of hashtags per message 1.32

(within set of tweets containing at least one hashtag)

Maximum number of hashtags per message 47

Median of hashtags per message 1

Hashtags distinct 7,777,194

Hashtags occurring ≥ 5 times in total 757,832

Hashtags occurring < 5 times in total 7,135,627

Hashtags occurring < 3 times in total 6,841,523

Hashtags occurring once 5,765,835

Average number of usages per hashtag 8.43

Median number of usages per hashtag 1

Table 3.2.: Overview Hashtags in Data Set

hashtags within the data set is 1. This low median can be explained by the
high number of hashtags which are only used once. This fact suggests that
the distribution of hashtag popularity is a longtail distribution which is also
exhibited and elaborated on in Section 3.2.3. A more detailed analysis of the
hashtags and their usage within the data set is featured in the remainder of
this section.

3.2.3. Hashtag Popularity Distribution

In a first step, we analysed the popularity of the different hashtags within
the data set. The evaluation of the distribution of hashtags showed that
this distribution follows a longtail distribution which means that only a small
fraction of all hashtags used on Twitter is used at a high frequency whereas
a large fraction of hashtags is used at most three times. This distribution is
shown in Figure 3.2. 44 hashtags are used more than 50,000 times and hence
are very popular in the Twittersphere. These 44 hashtags account to 10.69%
of all hashtag usages. On average, each hashtag is used 10.34 times. Of the
total 6,474,634 hashtag usages within the data set, 80% of these usages can be

30

3.2. Twitter Data Set

Figure 3.2.: Hashtag Popularity Distribution

accounted to hashtags which have only been used once. This is also underlined
by the fact that the median usage of a single hashtag is 1. Such hashtags
have been used by solely one user and often are very custom or obscure,
like #0jikai611, #10000ADay, #1000daysof2pm or #1509v1900. Hence, the
meaning of these hashtags can hardly be grasped by other users and therefore,
such hashtags are not adapted by other users and remain used only once.
Cunha et al. [22] detected a percentage of 60% of hashtags which are only
used once within their data set. However, this set of 1.7 billion tweets was
crawled within 2006 and 2009. This difference can be explained by the fact
that the concept of hashtags has been introduced in 2007 and evolved within
the last years. The Cunha data set contains tweets crawled already in 2006
when hashtags were not used at all and in the early stages of hashtag usage.

Such a distribution of hashtags and hence the tagging behaviour of users can be
lead back to the “rich get richer” phenomenon, as already described by David
Easley and Jon Kleinberg in [28]. This phenomenon basically describes that
the popularity of already popular items grows stronger than the popularity
of less popular items. This is also the case for hashtags where only a small
fraction of hashtags are used with a high frequency. This can be lead back to
the findings of Romero et al. [91] who showed that the process of adopting
hashtags is directly related to the number of exposures to a certain hashtag
(the average number of exposures until the adoption of a hashtag however
varies between different topics of tweets). As Twitter users are naturally more

31

3. Microblogs

often exposed to the most popular hashtags, they tend to adopt these hashtags
and hence, these hashtags become even more popular.

Table 3.3 lists all hashtags occurring more than 100,000 times within the data
set and the number of occurrences of the corresponding hashtag. From this
list, we can observe that many of these hashtags are very general hashtags not
necessarily describing a specific category. This generality is one of the reasons
that these hashtags are very popular as they are applicable to a wide range of
tweets. Many of the most popular hashtags are also very popular because of
habits the Twitter community developed over the years, like the hashtags #ff
or #teamfollowback.

Rank Hashtag Occurrences

1 #ff 538,795

2 #teamfollowback 466,186

3 #np 452,921

4 #oomf 318,190

5 #nowplaying 256,276

6 #rt 219,911

7 #fb 161,120

8 #nf 147,139

9 #bahrain 138,082

10 #500aday 121,114

11 #followback 119,020

12 #bakugeki 114,280

13 #followme 109,913

14 #jobs 104,515

15 #tfb 101,881

Table 3.3.: Most Popular Hashtags

In the following, the semantics of the hashtags listed in Table 3.3 are ex-
plained.

• The hashtag #ff stands for followfriday. This hashtag is used if a certain
user wants to recommend some users she follows to her followers as she
considers these recommended users to be worth following. Over time,

32

3.2. Twitter Data Set

people started to make such recommendations mostly on fridays which
is the cause for the followfriday hashtag.

• The hashtags #teamfollowback, #followback, #followme, #500aday

and #tfb are facilitated by users who want to gather more followers.
Such users start to follow a large amount of users and try to motivate
users to follow them back aiming at gaining more followers.

• The hashtags #np and #nowplaying are usually part of tweets which are
automatically created by audio player applications. These tweets contain
the title and artist of the music track the user currently is listening to.

• #rt is used to request the reader of the according tweet to retweet it.

• #fb is used for tweets which the user wants to add to her Facebook time-
line automatically. All tweets containing this hashtag are automatically
added to the Facebook page of the user by a specific Facebook app.

• #oomf stands for “one of my followers” and is typically used for tweets
which are concerned with one or more followers of the tweeting user.

• #bakugeki is a Japanese hashtag describes a certain kind of weapon used
by the characters appearing in Japanese mangas, animes and computer
games.

• #bahrain was used during the uprise in Bahrain protesting for freedom
and human rights.

• The hashtag #jobs is used for tweets which either contain information
about job openings or people searching for a job.

Also worth mentioning is that within the top-50 hashtags in the data set, also
the hashtags #syria and #egypt are featured. These two hashtags are used
for tweets concerning the protests and uprisings in Syria and Egypt.

3.2.4. Hashtag Distribution per Tweet

An important fact about the hashtag usage is the number of hashtags used per
tweet. As tweets are restricted to a length of 140 characters, also the amount
of characters available for hashtags is limited. As for our data set, more than
80% of all tweets contained only one hashtag which can partly be explained
by the limited size of tweets.

In Figure 3.3, the distribution of the number of hashtags per message is shown.
From this distribution it becomes clear that most users only incorporate very
few hashtags. As can be seen, about 81.87% of all tweets feature only one

33

3. Microblogs

1 ht: 82%

2 ht: 12%

3 ht: 3%
4 ht: 1%
> 4 ht: 2%

Hashtags per Tweet

Figure 3.3.: Distribution of Hashtags per Tweet

hashtag. The share of tweets which feature two hashtags is 11.85%. The
remaining 6.28% of tweets feature three or more hashtags.

Figure 3.4 once more depicts the longtail distribution of the number of hash-
tags per tweet. What is remarkable about this distribution is that there exist
tweets containing more than 20 hashtags. This behaviour can be explained by
the fact that also Twitter is subject to spam [107]. Although Twitter itself
aims at recognizing spam messages and the according accounts and success-
fully deletes 77% of these accounts, the authors state that 17% of all spam
accounts include trending topics and hashtags in their tweet in order to reach a
broad audience. Hence, the more such trending topics and hashtags are used,
the broader the audience. Such an approach is also known as “trend stuffing”.
A close examination of the relevant tweets revolves that this is exactly the
case. The following tweet exemplifies such a spam tweet where unrelated but
popular hashtags are used in order to propagate the tweet.

ugg boot shop http://uggbootshop.buyshoesale.com/

#buy #sale #price #ipad2 #iphone5 #hot #new #usa

#best #a

posted by @newfashioncheap on 2011-06-20

34

3.2. Twitter Data Set

1 4 7 10 14 18 22 26 30 34 38 42

Hashtags per Tweet

Number of Hashtags

Tw
ee

ts

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Figure 3.4.: Distribution of Hashtags per Tweet

However, also tweets seemingly not making sense contribute to such a distri-
bution, as the following tweets exemplify:

#U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U

#U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U #U

#U #U #U #U #U #U #U x6

posted by @MzMiamiHeatTH on 2011-05-16

#Are #we #still #making #fun #of #people #who #use

#a ## #for#everything? #Or #are #they #cool #now?

#If #so, #I #love #hashtags!

posted by @yearofRat on 2009-07-04

35

3. Microblogs

3.2.5. Position of Hashtags within Tweet

Another important analysis in regards to our approach is the exact position
of hashtags within the tweet. Figure 3.5 shows the distribution of the relative
position of hashtag occurrences within tweets. The figure clearly shows that
12.18% of all hashtag usages occur at the very beginning of a tweet. However,
68.88% of all hashtag usages occur after 22 characters which contributes to
our approach as it relies on the fact that the already entered parts of the tweet
are analysed and subsequently, suitable hashtags are recommended.

0 20 40 60 80 100 120 140

5e
+

03
5e

+
04

5e
+

05
5e

+
06

Position of Hashtag within Tweet

Position

Tw
ee

ts
 (

lo
g−

sc
al

e)

Figure 3.5.: Distribution of Hashtag Position within Tweet

3.2.6. Languages

In total, the presented data set contained tweets written in 29 different lan-
guages. Figure 3.6 show the distribution of the 12 most popular languages fea-
tured in the data set. English is the most dominant language as 64.46% of all
tweets are written in English followed by 13.13 % Japanese tweets and 9.99%
Spanish tweets. Portuguese, Korean, French, Russian, Indonesian, Dutch,
Turkish, Italian and German are also featured within the top-12 languages
used on Twitter.

36

3.3. In-Depth: Hashtags and Heterogeneity

en ja es pt ko fr ru id nl tr it de

Language Distribution

Language

Tw
ee

ts

2e
+

06
5e

+
06

2e
+

07
5e

+
07

2e
+

08

Figure 3.6.: Distribution of Top-12 Languages

3.3. In-Depth: Hashtags and Heterogeneity

Due to the immense amount of information available on Twitter and the lack of
means for a manual or automatic categorization or organization of this knowl-
edge, users of Twitter themselves introduced so-called hashtags. Hashtags
were originally introduced by Chris Messina, a Twitter user (@factoryjoe).
He proposed to use the hash sign as a prefix for tags for a formation of groups
concerned with a certain topic or some common interest11, as e.g. the hashtag
#barcamp in his original proposal:

how do you feel about using # (pound) for groups. As

in #barcamp[msg]?

posted by @factoryjoe on 2007/08/23

This tweet was the starting point for a manual categorization of tweets as
hashtags was taken up by the community and later also by Twitter.

11http://www.nytimes.com/2011/06/12/fashion/hashtags-a-new-way-for\-tweets-

cultural-studies.html

37

3. Microblogs

The success of such a simple concept such as hashtags can be lead back to
multiple factors:

• Hashtags are a means for easy-to-use annotations. The user simply
has to add a hash sign to any keyword she associates with the content of
the current tweet within the text of the current tweet and hence, adds
information about the topic resp. the category of the tweet. The set of
all hashtags of all users forms the Twitter folksonomy.

• Hashtags enable ad-hoc group formation as a group on Twitter can
be regarded as a set of users following conversations about the same
topic, like on conferences where the attendees use a hashtag related
to the conference (like #CIKM11). This enables all attendees to follow
conversations about the conference by simply searching for the related
hashtag without having to explicitly join a certain group, like on other
Social Media platforms as e.g. Facebook. Bruns et al. [15] describe
hashtags as “a means of coordinating a distributed discussion between
more or less large groups of users, who do not need to be connected
through existing follower-networks”. Thus, hashtags provide a means
for people to follow streams of thematically connected tweets without
having to follow a huge number of users in order to be able to receive
all messages about a certain topic. Furthermore, such a conversation
about a certain topic forms a virtual group only during the time of
actual discussions as the hashtag is probably not used anymore months
after a certain event has passed. Hence, due to the implicit topically
focused group formation, such groups simply resolve if there are not
more messages on this certain topic.

The dual role of hashtags—both the categorization of content and the creation
of a virtual community—have been studied by Yang et al. [115]. The authors
show that both roles of a hashtag are relevant for the adoption of hashtags.
According to Cunha et al. [22], hashtags are based on the need of users
to name an object or action. However, if a certain hashtag has not been
used before, a new hashtag is created and hence, the heterogeneity within
the hashtag vocabulary increases even if there already would have been a
semantically equivalent and suitable hashtag. In [85] the authors observed
the proliferation of hashtags in the course of information exchange of natural
disasters (earthquakes in New Zealand and Japan) and called for means to
solve this problem of heterogeneity.

Making use of hashtags aiming at a better classification of tweets is closely
related to the field of automatically classifying tweets. The classification of
tweets has already been addressed in research, as in [102]. This approach
classifies tweets into the categories news, events, opinions, deals and private

38

3.3. In-Depth: Hashtags and Heterogeneity

messages solely based on features which are extracted from the tweet itself,
like the user, time or event information and opinion (based on a predefined
list of words). However, such a classification into predefined categories can-
not replace hashtags in tweets as it can only provide a coarse-grained, auto-
matic classification of tweets whereas hashtags provide means for a very fine-
grained classification of topics and thematically-focused categories. However,
classification approaches may also be used to identify spam or trend-stuffing,
which basically means that spammers misuse trending hashtags and terms12

to broadcast spam messages to a big audience. The automatic classification
of tweets into trend-stuffing and posts being directly related to the according
trend is addressed in [50].

In a sense, hashtagging is very similar to other tagging applications, like in the
areas of social bookmarking of bibliographic [69], movie databases [97] or photo
categorization [99]. However, the major difference between traditional tagging
systems and the hashtagging concept of Twitter is that hashtags are not only
metadata, but also part of the message itself. Furthermore, traditional tags
are added after the according item was uploaded or created whereas hashtags
are already added to the tweet at the time of creation. Huang [48] investigated
how hashtags differ from traditional tags and state that tagging on Twitter is
rather used for filtering and promoting certain topics and contents in contrast
to the purpose of traditional tagging, namely increasing recall of search queries.
The authors consider hashtags as a way of “conversational tagging” as one tag
may initiate a conversation of multiple users and also because the tag is a
part of the message. The authors compared the use of tags between Twitter
and Delicious (a popular social bookmarking platform13) and found that tags
within Twitter are actively used for a shorter period of time and hence, are
subject to trends.

In regards to hashtags as a means for improving search precision, Teevan et
al. [106] investigated the difference between behavioural patterns of traditional
web search and search on Twitter. They found that users make use of Twitter
search as a source of information for finding timely information about news,
currently trending topics and also about ongoing events. Furthermore, users
facilitate Twitter search mechanisms for social information, e.g., opinions of
certain users about a certain topic etc. An analysis of query logs showed
that 3.25% of all Twitter queries contain user names and 21.28% of all search
queries contain one or more hashtags. Furthermore, out of the 50 most popular
Twitter queries (which amount to 21.19% of all queries), 50.73% of the queries

12The top-10 terms and hashtags mentioned within all current tweets are posted on the Twitter
website and are called trending topics. Patterns of trends and their characteristics have been
studied in [7].

13http://www.delicious.com/

39

3. Microblogs

contain one or more hashtags. Hence, hashtags are a frequently used and
valuable means for searching and navigating through the Twittersphere and a
homogeneous set of hashtags contributes to more efficient and precise search.
The authors also found that Twitter queries are repeated more often and are
shorter. Miles Efron came to a very similar result in his study in [30] as he
discriminates two different ways of searching data on Twitter: (i) by posting
questions aiming at getting other Twitter users to answer these questions and
(ii) searching the already existing data on Twitter for a possible answer to
the search task. For both of these tasks, the usage of a correct and popular
hashtag is crucial as in the case of (i), other users (except for the followers
of that certain user who automatically receive this question tweet) may only
find the question if they keep track of the hashtag used. E.g., a question
about a problem regarding Wordpress14, a free blogging platform, may only
be answered if it is directed to the right audience, i.e. Wordpress users and
professionals. This is accomplished by using the #wordpress hashtag, like in
the following tweet:

Which is the Best WordPress Translation Plugin?

http://bit.ly/LB0aHs #wordpress

posted by @WPMayor on 29/05/2012

As for the second way of answering information needs (that is, searching Twit-
ter), also the usage of suitable hashtags is crucial as tweets related to a stream
of conversation about a certain problem are most likely to be found by search-
ing for a specific hashtag.

The propagation and spread of hashtags within the Twittersphere also has
already been analysed. Romero, Meeder and Kleinberg analysed how users
adapt hashtags they are exposed to [91]. Being exposed to a certain hashtag
means that the one of the user’s followees has used the according hashtag. The
authors found that the speed of hashtag adoption is related to the category
the original tweet stems from, i.e. politics, celebrity, technology or sports.
They call this probability of adoption “stickiness”. Users that are exposed to
a certain hashtag multiple times are more likely to adopt a hashtag in the field
of politics or sports whereas hashtags stemming from tweets about music or
mentioning idioms are less likely to be adopted at the same speed. However,
the frequent adoption of hashtags also contributes to a heterogeneous set of
hashtags as even the most popular hashtags (i.e. those hashtags that users
are most likely to be exposed to most frequently) are very heterogeneous.
Consider the most popular hashtags within the data set presented in this

14http://www.wordpress.com

40

3.4. Hashtag Recommendation Concept

thesis shown in Table 3.3. Already within these very popular hashtags, many
synonymous hashtags are featured. E.g., #teamfollowback, #followback,
#followme, #tfb and #500aday are semantically equivalent. Also #np and
#nowplaying share the same meaning. Thus, the set of the most popular
hashtags already features semantically equivalent hashtags and the hashtag
popularity distribution in Figure 3.2 shows that a large portion of hashtags
are used less than three times. Bruns and Burgess showed in [15] that hashtags
are also homogenized manually by the community. This is done by replying
to users who make use of hashtags which are synonymous to the widely used
hashtag and pointing users to the more popular hashtags. Such an approach
is a very tedious task and requires a considerable amount of human effort. A
tweet exemplary for such user behaviour can be seen in the following:

#earthquake Apparently the official hashtag is

#eqnz; #doingitwrong. Glad someone’s got priorities

sorted.

posted by @adzebill on 2010-09-04

In this thesis, we propose recommender system for hashtags which provides
Twitter users with hashtags highly suitable for the tweet the user is currently
entering.

3.4. Hashtag Recommendation Concept

We propose a hashtag recommender system which aims at providing microblog
users with highly suitable recommendations of hashtags for the tweet the user
currently enters. By facilitating such an approach, the problem of synonymous
hashtags can be dealt with already at the time of the creation of a tweet as
users are provided with recommendations of hashtags which have already been
used by other users entering a semantically similar tweet. Hence, synonymous
hashtags are not even created. Furthermore, by providing suitable hashtags,
users are encouraged to enter hashtags at all aiming at increasing the number
of tweets containing hashtags. In this section, we present a concept for hashtag
recommendations based on a crawled data set.

During the input of a certain tweet, recommendations have to be computed on
the fly (with every keystroke) in order to ensure that the user is provided with
the most suitable hashtags for his tweet. Another reason for the computation
of hashtags already during the insertion of a microblog entry is that hashtags
may appear at any position within a microblog entry, e.g. also embedded in
the actual text, like the hashtag #crowdsourcing in the following tweet:

41

3. Microblogs

‘‘Better shred than read: DARPA uses competitive

#crowdsourcing to revive destroyed documents

http://t.co/A7zOWass’’

Posted by @abellogin on 2012/01/12.

Generally, we split the computation process into the following main steps:

1. For the given tweet (or parts of it), retrieve the most similar tweets
within the tweet data set.

2. Extract the hashtags contained in the set of the most similar tweets.

3. Rank the extracted hashtags according to some ranking algorithm.

4. Recommend the top-k hashtags to the user.

These steps are described in detail within the next sections.

3.4.1. Basic Algorithm

In the following, the recommendation algorithm for the computation of hash-
tag recommendations for microblog platforms is explained. Figure 3.7 also
depicts the workflow of the recommendation process. For all of the follow-
ing steps, the data set used is the data set presented in Section 3.2, which is
stripped from all tweets not containing any hashtags as these entries do not
contribute to the computation of hashtag recommendations.

User
types
entry

Get most
similar
entries

Retrieve
set of

hashtags

Apply
ranking

to
hashtags

Recommend
top-k

hashtags

Figure 3.7.: Basic Computation of Recommendations—Workflow

42

3.4. Hashtag Recommendation Concept

Algorithm 1 depicts the detailed algorithm underlying the computation of
hashtag recommendations. After the given initialisation steps, the most sim-
ilar entries are searched for within the tweet data set. This is realized by
making use of a fulltext index which is responsible for retrieving the set of
top-n most similar entries for a given input entry τi and a given similarity
measure similarityMeasure. For accomplishing this task, each entry τj ∈ C
within the data set is compared to the input entry τi and the similarity mea-
sure determines the similarity score for all such pairs (τi, τj) of entries. Further
information about the different similarity metrics used for our approach can
be found in Section 3.4.2. The entries within the set of the most similar en-
tries are sorted and the top-n entries (entryCand) within this sorted list are
used as entry candidates for the next step. The so-called hashtag recommen-
dation candidates are extracted such that all hashtags occurring in each entry
τ ∈ entryCand are extracted and added to the set hashtagCand. This un-
ordered set is subsequently ranked based on a given ranking method. Our
proposed ranking mechanisms are described in Section 3.4.3. Again, this list
of hashtag recommendation candidates is cut off in order to retrieve the top-
k most suitable hashtag recommendations. The final list of ranked hashtag
recommendation candidates is then the result of the recommendation compu-
tation process and presented to the user.

3.4.2. Similarity of Microblog Entries

The hashtag recommendation candidates for a certain input entry τi are ex-
tracted from the entries most similar to τi. This is due to the fact that we
assume that entries containing similar contents also contain similar hashtags.
Hence, a function describing the similarity (or distance) of entries is required.
Therefore, we chose to evaluate different traditional functions aiming at find-
ing the most suitable similarity measure in regards to the quality of the sub-
sequently computed hashtag recommendations.

Generally, string similarity measures can be categorized into set (or bag)-
based and vector-space models [72]. Set-based models rely on a bag-of-words
approach where all terms of a given text form a bag of words, i.e. the order
in which the terms originally appeared in is ignored. The computation of
the similarity of two given strings is computed based on the bags of terms
stemming from the two input strings and is mostly related to the intersection of
these two bags. E.g., the two strings “Federer wins over Nadal at Wimbledon”
is equal to “Nadal wins over Federer at Wimbledon” as the two bags for the two
texts are equal as the intersection of these two strings is equivalent to both of
the entries. In contrast, vector-space models rely on the representation of texts
as (mostly weighted) vectors where each dimension of the vector corresponds to
one term within the corresponding document. A weighting of the dimensions is

43

3. Microblogs

Data: C, collection of all microblog entries within the reference tweet
data set

Data: τi, input microblog entry
Data: similarityMeasure used for candidate entries
Data: rankingMethod used for hashtag recommendations
Data: n, number of similar hashtags used for recommendation
Data: k, number of hashtags recommended
Data: δ, threshold minimum similarity score
Result: Ranked list of top-k hashtag recommendations

1 begin
2 // Initialisation

3 similarEntries, hashtagCand := {}
4 sortedEntryList, entryCand, rankedCandList, resultList := []
5 simScore := 0.0

6 // (1) Find most similar microblog entries

7 foreach Entry τj within C do

8 simScore = similarity(τi, τj , similarityMeasure)
9 if simScore > δ then

10 similarEntries = similarEntries ∪ {(τj , simScore)}
11 end

12 end

13 // Sort entries w.r.t. similarity score

14 sortedEntryList = sort(similarEntries)

15 // Use top-n most similar entries

16 entryCand = cutOffList(sortedEntryList, n)

17 // (2) Extract hashtags

18 foreach Entry τj within entryCand do
19 hashtagCand = hashtagCand ∪ extractHashtags(τj)
20 end

21 // (3) Perform ranking of hashtags

22 rankedCandList = rank(hashtagCand, rankingMethod)

23 // (4) Compute top-k recommendations

24 resultList = cutOffList(rankedCandList, k)

25 // Return top-k recommendations

26 return resultList

27 end

Algorithm 1: Basic Recommendation Algorithm

44

3.4. Hashtag Recommendation Concept

performed in order to weigh down terms which e.g. occur at a high frequency
in many documents of the corpus and may not be significant in regards to
describing the characteristics of a certain document. Besides these two types
of exact similarity measures, we also evaluated the suitability of approximate
string matching techniques (also known as fuzzy string matching), in particular
we evaluated the Levenshtein distance.

In the following, we present both distance and similarity functions for two
entries τi and τj . Hence, these two directly opposed functions have to be
transformed into one uniform notation describing how similar (or different) two
strings are. Two strings are equal if either the similarity function computes to
1 or the distance functions computes to 0. However, it is easily observed that
a distance function can be turned into a similarity function (see Equation 3.1)
and vice-versa, a similarity function can be turned into a distance function
(see Equation 3.2).

sim(τi, τj) = 1− dist(τi, τj) (3.1)

dist(τi, τj) = 1− sim(τi, τj) (3.2)

All of the presented measures are normalized to the range [0, 1] in order to
make the similarity computation results comparable.

In the following, we present the different similarity (resp. distance) functions
we chose to evaluate for the hashtag recommendation task. We first present
two set-based similarity functions (Jaccard and Dice similarity coefficients),
then the cosine similarity measure based on the vector space model and accord-
ing weighting functions and finally the Levenshtein distance as a representative
for approximate string matching.

Jaccard Similarity Coefficient

The Jaccard similarity coefficient is a set-based similarity measure. This sim-
ilarity coefficient defined as the fraction between the overlap of terms and size
of the union of the two entries τ1 (query) and τ2 (document) which are to be
compared. Equation 3.3 shows the computation of the coefficient, where Ti
and Tj are the respective sets of words contained in the corresponding entries
τi and τj .

sim(τi, τj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

(3.3)

Consider the following example entries:
τi = “Roger Federer is about to win against Rafael Nadal in Wimbledon”,
τj = “I wish Rafael Nadal would do better against Roger Federer in Wimble-
don”.

45

3. Microblogs

The intersection of the two sets of tokens based on the texts is 7 (τi ∩ τj =
{Roger, Federer, Rafael, Nadal, Wimbledon, against, in}). The size of the
union of the tokens of the two texts (|τi ∪ τj |) is 16 and hence, the Jaccard
similarity coefficient accounts to 0.44.

The Jaccard coefficient may also be modelled in the (boolean) vector space (as
in [120, 96]). A boolean vector D representing a document d (in particular,
an entry τ containing terms ti) is defined as

D = (Di)1<i<|T | =

{
1 if term ti ∈ T
0 else

(3.4)

where T is the set of all distinct terms within the corpus and ti are the terms
occurring in this set (document). Based on two such vectors, one represent-
ing the query and another vector representing the document which is to be
compared, Jaccard similarity can be defined as

sim(τi, τj) =

∑
t∈Tτi,τj

(Dτi ·Dτj)

|τi|+ |τj | −
∑

t∈Tτi,τj
(Dτi ·Dτj)

(3.5)

where Dτi and Dτj are the boolean vectors representing two entry documents
τi and τj , Tτi,τj is the set of all distinct terms occurring in both τi and τj and
|τi| resp. |τj | is the document length of the according document.

Dice Similarity Coefficient

The Dice coefficient also is a set-based similarity function and is very similar
to the Jaccard similarity coefficient. Dice also defines the similarity in regards
to the similarity of the set-interpretation of both the query string τ1 and the
actual document τ2. The function is defined as the fraction between the overlap
of terms contained in both the query entries τi and an entry τj and the sum of
the lengths of the two documents (microblog entries). The coefficient can be
computed as in Equation 3.6, where Ti and Tj are the respective sets of words
contained in the corresponding entry τi and τj .

sim(τi, τj) =
2 · |Ti ∩ Tj |
|Ti|+ |Tj |

(3.6)

Consider the example texts already mentioned the description of the Jaccard
similarity coefficient (cf. Section 3.4.2). Again, the intersection of the two sets
is 7. However, in the case of Dice similarity coefficient, the denominator of the
fraction is defined as the sum of the cardinalities of the two sets. In the case
of this example, |τi| = 11 and |τj | = 12. Hence, the denominator amounts to
23 and the resulting Dice similarity coefficient is 0.30.

46

3.4. Hashtag Recommendation Concept

Similarly to the vector space implementation of the Jaccard similarity coeffi-
cient, the Dice similarity coefficient can also be modelled in the vector space:

sim(τi, τj) =
2 ·

∑
t∈Tτi,τj

(Dτi ·Dτj)

|τi|+ |τj |
(3.7)

where Dτi and Dτj are the boolean vectors representing two microblog doc-
uments τi and τj , Tτi,τj is the set of all distinct terms occurring in τi and τj
and |τi| resp. |τj | is the document length of the according document.

For equal input texts, the Dice similarity coefficient is smaller or equal to the
Jaccard similarity coefficient. This is due to the fact that the denominator for
Dice is greater than the denominator for Jaccard. Dice and Jaccard are only
equal in the case of an empty intersection of the set of the tokens of the two
input texts. In any other case, the Dice coefficient is smaller than the Jaccard
coefficient, per definition.

Cosine Similarity

The vector space cosine similarity function is one of the predominant measures
in information retrieval and is widely used for computing query-document
and document-document similarities [32]. It is based on the (weighted) term
vectors of both the query and the respective document which is to be compared
to the query. In the case of searching for the best matching entry for a certain
input entry, the query is defined by the input entry and the cosine similarity is
computed for the input entry and every single entry contained in the database.
The definition of cosine similarity between vectors (i.e. the cosine of the angle
between these two vectors) is defined as shown in Equation 3.8 where vi is the
vector representing the input entry (the query) and vj is vector representing
the reference entry from the reference database.

cos(vi, vj) =
vi · vj
‖vi‖ ‖vj‖

=

∑N
k=1 vk,i · vk,j∑N

k=1 v
2
k,i

∑N
k=1 v

2
k,j

(3.8)

Closely related to the cosine similarity of vectors is the weighting of terms [93]
which allows for the computation of weight factors of each single term featured
in the vectors. We chose to evaluate the cosine similarity of weighted term
vectors computed by two different weighting schemes: the term frequency-
inverse document frequency weighting scheme and the BM25 Okapi weighting
scheme, which are defined below.

The traditional term frequency-inverse document frequency (tf-idf) weighting
scheme aims at estimating the relevance and importance of a certain term in
relation to the whole document corpus (in our case the reference database).

47

3. Microblogs

This function is based on two components: term frequency (tf) and inverse
document frequency (idf). tf can be defined as the number of occurrences of
the given term ti within the current document D (in particular, a microblog
entry). The idf component basically defines how relevant a term is in relation
to the whole set of documents, as can be seen in Equation 3.9 where N is
the total number of documents within the reference database and n(ti) is the
number of documents which contain the given term ti.

idf(ti) = log
N

n(ti)
(3.9)

These two components are then combined to the tf-idf weight of a given term
as can be seen in Equation 3.10.

tf-idf(ti, D) = tf(ti, D) · idf(ti) (3.10)

The second weighting scheme we made use of is the BM25 Okapi weighting
scheme [90] which additionally incorporates the average length of a document.
Furthermore, smoothing and tuning factors are incorporated. BM25 is com-
puted based on a similar definition of the inverse document frequency as can
be seen in Equation 3.11, where n(ti) again is the number of documents which
contain the given term ti and N is the total number of documents within the
reference data set.

idf(ti) = log
N − n(ti) + 0.5

n(ti) + 0.5
(3.11)

The BM25 Okapi weight of a given term in relation to the reference data
set can subsequently be computed as in Equation 3.12, where D is the total
number of documents in the reference data set, f(ti, D) is the number of
occurrences of term ti in the document D, |D| is the length of document d
and avgLen is the average length of all documents within the reference data
set. Furthermore, two tuning parameters are used: k1 is set to 1.2 and b is set
set 0.75 as proposed in [90].

bm25(ti, D) = idf(ti) ·
f(ti, D) · (k1 + 1)

f(ti, D) + k1 · (1− b+ b · |D|
avgLen)

(3.12)

Levenshtein Distance

The Levenshtein distance [67] (also known as edit-distance) is a traditional
lexical distance measure for strings. The Levenshtein distance is particularly
widely used for spelling corrections as it provides for a simple means for ap-
proximate string matching (e.g. [70]). It is defined by the minimum number
of edits required for transforming string ti into string tj . In this context, edits
may be (i) the insertion of a character, (ii) the deletion of a character or (iii)

48

3.4. Hashtag Recommendation Concept

the replacement of a certain character with another character. I.e. the Leven-
shtein distance between the words “house” and “mouse” is 1 as only one edit
(namely the replacement of the first character) is required.

In particular, we applied the Levenshtein similarity measure as shown in Equa-
tion 3.13, where the number of edits required to turn one document into the
other (lev(τi, τj)) is divided by the minimum of the lengths of the two docu-
ments. This allows for a normalization of the result of the similarity function
to the range of [0, 1], which is highly desirable for the subsequent ranking of
entries and which makes the different similarity functions comparable.

sim(τi, τj) = 1− lev(τi, τj)

min(|τi|, |τj |)
(3.13)

One variant of the Levenshtein distance we also evaluated, is the Levenshtein-
Damerau distance [23], which also allows for transpositions (besides insertions,
deletions and replacements). E.g., the distance of the two strings “huose” and
“house” is 1 as two adjacent characters have to be transposed, whereas with
the traditional Levenshtein distance, the distance would have been 2.

3.4.3. Ranking Strategies

The computation of the most similar entries for the given input entry τi (as
described in Section 3.4.2) results in a set Sτi of similar entries for the given
input entry. The set of hashtag recommendation candidates Hτi is extracted
from the entries within Sτi . The hashtags featured in the set Hτi have to be
ranked according to some relevance criteria. The ranking of hashtag recom-
mendation candidates is a crucial step in regards to the performance of the
recommender systems. The user is provided with the top-k recommendations,
where k denotes the number of hashtags contained in the set of hashtag rec-
ommendation candidates. Hence, the most appropriate hashtags for the given
entry have to be ranked as high as possible in order to provide the user with
a satisfactory set of recommendations. Usually, a set of 5–10 recommenda-
tions is most appropriate which also corresponds to the capacity of short-term
memory [73]. Also, microblog entries are a means for fast communication and
hence, the list of hashtags appropriate for a given entry has to be easily and
rapidly comprehensible for users who are just entering an entry which strength-
ens the fact that only a few recommendations are provided. Furthermore, the
limited space available for displaying recommendations additionally constrains
the number of hashtags to be recommended. The work by Bollen et al. [11]
underlines this choice as the authors conducted an experiments showing that
presenting users with a large number of good and valuable recommendations
is counterproductive as the choice of a recommendation becomes inherently
difficult for the user. The experiments showed that presenting a set of recom-

49

3. Microblogs

mendations containing between 5 and 20 items limits the problem of choice
overload while at the same time offering variability to the user.

In the following, we present the proposed ranking strategies which rely on
the content of the entries, overall hashtag usage statistics and also timely
features.

SimRank

This ranking method is based on the similarity of the input entry τi and the
entries contained in the set of the most similar entries Sτi . This ranking hence
resembles a recommendation of hashtags based on the entries most similar
to the input entry and therefore is directly related to the message content.
For the ranking, the similarity values computed by the similarity measures
presented in Section 3.4.2 are directly used for the ranking of the hashtag
candidates such that the higher the similarity of the input entry τi and the
entry featuring the according hashtag, the higher the ranking of the hashtag.
If a hashtag is featured in multiple entries, the highest score obtained is used
for the ranking.

RecCountRank

The recommendation-count rank is based on the popularity of hashtags within
the hashtag recommendation candidate set. This implies that the more similar
messages contain a certain hashtag, the more suitable the hashtag might be.
This ranking follows the “one person, one vote” principle introduced by Hill
and Terveen [43], which was also facilitated by Chen et al. [19] for the ranking
of URL recommendation candidates extracted from Twitter. Based on this
principle, each entry within the set of most similar entries is able to vote for
each of the hashtags. I.e. if a certain hashtag is contained in the entry, the
hashtag is voted. These votes are counted and based on the count values, the
ranking is performed such that the more votes a hashtag obtained, the higher
is its ranking.

RecCountRank(Sτi , h) = | {τj | h ∈ τj ∧ τj ∈ Sτi} | (3.14)

GlobalPopularityRank

The so-called global popularity rank is based on the global popularity of hash-
tags within the whole underlying data set S, i.e. the set of all hashtags. Again,
a “one person, one vote” approach is used, as in RecCountRank. In contrast,
the set of all entries containing hashtags is used as input for the vote. As
only few hashtags are used at a high frequency, it is likely that such a popular
hashtag matches the user’s entry. Therefore, ranking the overall most popular

50

3.4. Hashtag Recommendation Concept

hashtags from within the candidate set higher is also a suitable approach for
the ranking of hashtags.

GlobalPopularityRank(S, h) = | {τj | h ∈ τj ∧ τj ∈ S} | (3.15)

MostRecentlyUsedRank

Besides considering either the content of the entry corresponding to a certain
hashtag or the popularity of the given hashtag for the ranking of the hashtags,
also timely features may play an important role for the ranking of hashtags.
This is especially the case for highly dynamic microblogging platforms where
trending topics evolve rather quickly and hence, the according hashtags may
also gain popularity quickly. Therefore, we propose two different ranking
methods based on timely features of the entries and according hashtags.

The MostRecentlyUsedRank considers the recency of the usage of the hash-
tag recommendation candidates. The more recent a certain hashtag has been
used, the higher its ranking. This ranking enables the detection and prior-
itization of currently trending hashtags (most probably related to trending
topics) which have been used recently. In particular, the ranking is based on
the timespan between the time of the computation of recommendations and
the time the hashtag was used the last time. The computation is performed
on the according timestamps.

MostRecentlyUsedRank(Sτi , h) = min({now()− createdAt(τj) | τj ∈ Sτi})
(3.16)

AvgUsageAgeRank

The second time-related ranking method is AvgUsageAgeRank. This ranking
method aims at identifying how “trending” a certain hashtag is, i.e. how often
it has recently been used. Therefore, we propose to make use of the average
timespan between the time of recommendation and the respective usages of a
certain hashtag. I.e. the more often the hashtag has been used recently, the
higher is its ranking as the hashtag can be regarded as recently trending.

AvgUsageAgeRank(Sτi , h) = avg({now()− createdAt(τj) | τj ∈ Sτi})
(3.17)

Performing the ranking of hashtags solely based on the most recently used
hashtags or the average recency of usage is not likely to gain satisfactory re-
sults. However for hybrid ranking methods, adding recency and timely factors
to the ranking may contribute to a better result as trends within the Twitter-
sphere are also taken into account.

51

3. Microblogs

Hybrid Ranking

Besides the previously presented basic ranking algorithms, we propose to use
hybrid ranking methods which are based on the presented basic ranking algo-
rithms. The combination of two ranking methods is computed by the following
formula:

hybrid(r1, r2) = α · r1 + (1− α) · r2 (3.18)

where α is the weight coefficient determining the weight of the respective
ranking within the hybrid rank. r1 and r2 are normalized to be in the range
of [0, 1] and can therefore be combined to a hybrid rank.

3.4.4. Co-Occurrence of Hashtags

In order to further enhance the quality of recommendations, we propose to
also make use of a co-occurrence analysis of hashtags. Consider the following
microblogging message which contains four hashtags:

garshol.priv.no/blog/231.html RDF triple stores

- an overview by @larsga ... simply, brilliant!

#linkeddata #datastore #nosql #rdf

posted by @mhausenblas on 19/09/2012

By performing an analysis of co-occurrences of hashtags (that is, multiple
hashtags appearing in the same microblogging messages), hashtag recommen-
dations may be enhanced. Hashtags related to either the hashtags the user has
already used in the current message or hashtags related to the recommended
hashtags may be added to the set of recommendation candidates. If a user
e.g. specified the hashtag #rdf, he may also be presented with the hashtags
#linkeddata or #nosql based on an analysis of co-occurring hashtags.

Modelling Co-Occurrence

In particular, we propose to model hashtags co-occurring within a given tweet
as pairs of hashtags {hashtag1, hashtag2}. In the case of three or more co-
occurring hashtags, these are splitted into distinct pairs of hashtags. Such a
model features multiple advantages: (i) pairs allow for a better optimization
in regards to computing recommendations (ii) the evaluations of the data set
showed that only 6.28% of all messages feature more than two hashtags, hence
one pair is sufficient for storing co-occurring hashtags for the majority of the
tweets and (iii) this approach enables a more fine-grained computation of hash-
tag recommendation candidates. As co-occurrence of hashtags within a single
microblogging message is a symmetrical property, we chose to use unordered
pairs such that we do not have to store both pairs (hashtag1, hashtag2) and

52

3.4. Hashtag Recommendation Concept

(hashtag2, hashtag1). In order to be able to assess how often two hashtags
are on the same microblogging message throughout the corpus, we extend
this pair of co-occurring hashtags with a count value c representing the num-
ber of co-occurrences across the underlying data set. Hence, all co-occurring
hashtags are modelled as triples (x, y, c).

The actual selection of recommendation candidates is performed by selecting
all triples which feature one of the input hashtags. As for the input of the
co-occurrence analysis to be conducted, two different approaches can be taken
into account:

• The set of hashtags already specified for the current microblogging mes-
sage can be used as input for the computation of further recommendation
candidates.

• The set of hashtags candidates already computed by the basic algorithm
as defined in Section 3.4.1 can be used as input in order to detect further
hashtag recommendation candidates.

Co-Occurrence Analysis

Based on the previously presented notation of co-occurrence of hashtags, we
performed an analysis for the data set presented in Section 3.2. In the course
of this evaluation, we extracted all pairs for tweets which contain more than
one hashtag. By doing so, we created a set of 20,663,292 ordered pairs which
we reduced to 10,331,646 unordered pairs and the according count values.

Table 3.4 contains the results of the analysis. As can be seen, 11 pairs of
hashtags occur on more than 50,000 messages (in a data set of a total of
49,696,615 messages) which amounts to 0.1% of all messages (pair popularity).
However, the majority of pairs occurs at a low frequency. For 97.85% of
all pairs, the two hashtags of the respective pairs only co-occur within less
than 10 messages. These numbers indicate a long-tail distribution of pairs.
Hence, a large fraction of the computed pairs occur infrequently. Therefore,
making use of such unpopular pairs for the computation (or enhancement) of
hashtag recommendations may lead to a more diverse and homogeneous set
of hashtags as combinations of hashtags which only very few users made use
of are considered for recommendation. Therefore, we propose to only consider
those hashtags stemming from co-occurrence analysis having a count-value
higher than a certain threshold.

53

3. Microblogs

No. of Pairs % of Pairs Pair Popularity

11 1.1 · 10−6% > 50, 000 (1 · 10−3% of all entries)

160 1.5 · 10−5% > 10, 000 (2 · 10−4%)

300 2.9 · 10−4% > 5, 000 (1 · 10−4%)%

1,349 1.3 · 10−3% > 1, 000 (2 · 10−5%)%

18,087 1.7 · 10−2% > 100 (2 · 10−6%)%

10,313,356 99.82% < 100 (2 · 10−6%)

10,109,704 97.85% < 10 (2 · 10−7%)

Table 3.4.: Co-occurrence Analysis

Ranking

As for the ranking of hashtag recommendation candidates computed by the
above presented approach of co-occurrence analysis, we propose two different
methods:

• A stand-alone ranking method which can be combined into a hybrid
rank (see Section 3.4.3 for a description of the hybrid ranking method).
For this ranking method, we propose to make use of the count-value c
stemming from the co-occurrence pair (x, y, c) where either x or y is an
input hashtag, i.e. we rely on the popularity of a certain rule for the
ranking of the respective recommendation candidates. This approach
enables an integration of the computed recommendation candidates with
other recommendation candidates stemming from the basic algorithm for
hashtag recommendations.

• The analysis of co-occurrences can also be exploited to enhance a ranking
of hashtags already computed by one of the ranking methods presented
in Section 3.4.3, i.e. no further recommendation candidates are added.
Instead, we propose to use the hashtags computed by a co-occurrence
analysis to boost the ranking of those hashtags which also have been
computed by the basic algorithm for hashtag recommendations. Such a
boosting can be implemented by multiplying the already computed rank
by a boosting factor β which resembles the ranking of the hashtag within
the set of hashtags computed by a co-occurrence analysis.

3.4.5. User-Specific Recommendations

For the hashtag recommendation concept presented in this dissertation, we
also propose to make use of the user’s hashtagging behaviour history, i.e. to

54

3.5. Evaluation

analyse the hashtags the user previously made use of in her microblogging
messages. By facilitating such an approach, the hashtag recommendations
can be customized to the user’s previous hashtagging behaviour. This may
lead to a higher acceptance rate of recommendations as users tend to re-use
hashtags once they adopted these hashtags. This additional enhancement of
recommendations can be implemented by introducing a boost value β repre-
senting e.g. the number of usages of the respective hashtag. This value is used
to boost the rank of all hashtags within the set of recommendation candidates
which the user already made use of in the past.

3.5. Evaluation

The following section describes the evaluation of the proposed algorithms.

The hashtag recommendation task fulfilled by the proposed system can be
seen as a recommendation of good items according to [39]. Gunawardana et al.
state that the recommendation of good items to users is basically concerned
with providing users with recommendations for items the user is likely to
accept. In the case of the proposed system, the user is presented with hashtags
which are most likely to be useful to the user and can hence be identified as
the recommendation of good items. More specifically, Gunawardana et al.
identify two major subtasks: (i) the recommendation of some good items
and (ii) the recommendation of all good items. Such a distinction between
recommendation tasks can also be found in [42].

The recommendation of all good items aims at providing the user with all
important and suitable items. Hence, such an approach results in a long list
of recommendations. As for our hashtag recommendation system, such an
approach is not feasible simply due to the fact that a tweet is restricted to
a maximum length of 140 characters which significantly limits the number of
hashtags which can be used within a tweet. A second restriction which implies
that the task cannot be identified as the recommendation of all good items is
that Twitter is a very fast and efficient medium. Hence, the user can only be
presented with a short list of possible hashtag candidates as the goal is to be
able to quickly post tweets including the selection of one or more presented
and recommended hashtags. Thus, there is no point in recommending all suit-
able hashtags to the user. Therefore, our evaluation (and also the presented
recommendation approach) aims at recommending some items (namely hash-
tags) to the user. Jannach et al. refer to this task as a classification task
which aims at recommending the most relevant items to a user [51].

We chose to perform an automatic evaluation to assess the quality of the com-
puted recommendations. The main focus of the evaluation lies on assessing the

55

3. Microblogs

accuracy of the computed recommendations. This is due to the fact that such
an automated offline evaluation is able to assess the quality of the algorithms
fast and efficiently. Such offline evaluations can be implemented based on
single evaluation runs which incorporate millions of tweets and the according
hashtags automatically. Also the tuning of parameters within the algorithms
can be realized efficiently as every change in parameters can immediately be
evaluated when using offline evaluation methods. Moreover, it is hardly feasi-
ble to gather a sufficient number of test users as the test users would have to
evaluate all proposed algorithms in multiple different configurations.

I.e. we based our evaluation on historic tweets contained in the crawled data
set and evaluated whether our recommendation algorithms would have rec-
ommended hashtags that the users already made use of within their tweets.
Hence, the evaluation assesses whether our recommender system would have
reconstructed the hashtags of the original tweet. The results of such an eval-
uation can be seen as a baseline as the system might even have recommended
better suitable hashtags which were not featured in the original tweet and
hence, were evaluated to not be correct. However, assessing whether a cer-
tain hashtag would have suited the given tweet better can hardly be detected
automatically as this decision depends on various influence factors like the
popularity of the hashtag, the community using this hashtag, the fact that
hashtags are adopted from followers and followees, the stream of conversa-
tion evolved around this hashtag, etc. Therefore, we rely on an automatic
evaluation relying on huge numbers of tweets and consider the results of this
evaluation as baseline results. Still, the development of a client for future user
studies is part of ongoing work.

3.5.1. Metrics

Based on the definition of [39] and adapting it to the task of recommending
hashtags, the possible outcomes of the recommendation of a hashtag are shown
in Table 3.5. True Positives are items (hashtags) which were recommended and
also actually selected15 by the user whereas False Positives were recommended,
however not picked by the user. False Negative samples are hashtags which
were not recommended but would have been suitable for the user and True
Negatives are items neither recommended nor picked.

The exact evaluation procedure and the corresponding algorithm can be found
in Section 3.5.3. The fact that only historic information, namely the actual
use of hashtags within tweets, form the basis for the evaluation, an evaluation
of False Positives and True Negatives is not feasible as only accepted and used

15The notion of “selecting” an item refers to having used the item in the original tweet in our
evaluation setup.

56

3.5. Evaluation

recommended not recommended

picked True Positive False Negative

not picked False Positive True Negative

Table 3.5.: Recommendation Confusion Matrix

hashtags are recorded. Therefore, only True Positive and False Positive items
can be considered for the computation of evaluation metrics. Hence, the result
of evaluating a single recommendation can only be either 0, if the user did not
accept a recommendation or 1 if the user accepted the recommended item.
Based on these definitions, the two evaluation metrics precision and recall can
be computed as shown in Equations 3.19 and 3.20. These metrics originate
from the area of information retrieval and are traditionally also used for the
evaluation of the accuracy of recommender systems [25]. These metrics have
originally been proposed by Cleverdon and Kean [20].

precision =
|#TruePositives|

|#TruePositives+ #FalsePositives|
(3.19)

recall =
|#TruePositives|

|#TruePositives+ #FalseNegatives|
(3.20)

Precision defines a ratio between the number of actually accepted recommen-
dations (#TruePositives) and the total number of recommendations provided
to the user. This total number of recommendations is computed by summing
up the number of accepted (#TruePositives) and the number of neglected
recommendations (#FalsePositives). Hence, the precision characterizes the
amount of correctly computed recommendations regardless of how many more
items would have been correct. In contrast, the recall measure defines a ra-
tio between the accepted recommendations and the total number of correct
recommendations possible (all hashtags originally used). Due to the historic
evaluation, the set of applicable hashtags is defined by the hashtags the user
originally used within a tweet.

It is important to note that precision and recall are inversely related. This
fact that implies that if the number of recommended items is increased, the
recall value also increases. In contrast the precision values deteriorates as less
recommended items are correct and hence the precision of recommendations
decreases.

57

3. Microblogs

The third measure used is the F1-score which basically combines the precision
and recall values to one single measure. This is very beneficial as the accuracy
and performance of a recommender system can only be described by both of
these measures, they cannot be interpreted independent from each other. The
according formula of the F1-score can be seen in Equation 3.21. We also make
use of this measure throughout our evaluation as it can be seen as a more
universally comparable measure for recommendation algorithms [51].

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3.21)

3.5.2. Preprocessing of Data

The data serving as basis for the proposed computation of recommendations
has to be pre-processed in order to provide highly suitable recommendations
and reaching the best possible results for the users of the system. These pre-
processing steps include the following tasks:

• Stripping the data set from all tweets not containing any hashtags as
these do not contribute to the recommendation process and would un-
necessarily blow up the fulltext index and hence, slow down the recom-
mendation computation process.

• Removal of all retweets as these would lead to recommendations based
on the originally retweeted messages (if it is contained in our corpus)
and would hence distort the evaluation results.

• Removal of all tweets containing more than 6 hashtags from the data
set. Such tweets are mostly regarded as spam tweets and hence, may
decrease the quality of the resulting hashtag recommendations. This is
especially the case if trend-stuffing (cf. Section 3.2.4), as such tweets
contain various hashtags which are not related to the tweet’s content
and also not related to the other hashtags used within the tweet.

• Removal of tweets which only consisted of hashtags as there is no infor-
mation left from which the algorithm could compute recommendations
from.

• Computation of statistics required for ranking computations later in the
workflow as e.g., the overall popularity of a certain hashtags (i.e., to
count and store the overall occurrences of each single hashtag within the
data set).

58

3.5. Evaluation

3.5.3. Evaluation Algorithm

The evaluation of the proposed approach is done via a Leave-one-Out-Test
[21]. Such a Leave-one-Out-Test is a traditional evaluation method for the
assessment of the quality of recommendations. Basically, such an experiment
is based on partitioning the test data (in our case the set of tweets contained
in the data set described in Section 3.2). In the case of Leave-one-Out, one
single item of the data set is withheld and constitutes the test item whereas the
remaining entries are used for the computation of the recommendations. Sub-
sequently, the recommendations are compared to the withheld item in order
to evaluate the computed recommendations. Our actual evaluation algorithm
is shown in Algorithm 23.

1. Randomly select a tweet from the database.

2. Remove all hashtags from this tweet.

3. Use the tweet as input for the recommendation engine.

4. Call the recommendation process.

5. Compare the set of recommended hashtags to the set of hashtags used
in the original tweet.

6. Compute the evaluation metrics recall, precision and F1-measure as de-
scribed in Section 3.5.1.

The evaluation was done on a CentOS 5 system with 96 GB RAM and 2
quadcore processors. We chose to use a sample size of 1.000, i.e. for each
evaluation run, 1.000 random tweets are taken and the evaluation procedure
for these tweets is carried out. It is important to note that within one set
of evaluation runs (i.e. for the different ranking methods and the different
configurations), always the same set of random samples was used in order
to guarantee reproducible results. As for the number of search results used
for the initial setup of hashtag recommendation candidates (variable n within
Algorithm 1), we chose to perform the evaluations with a value n = 200 as
our experiments showed that incorporating a higher number of search results
did not improve the evaluation results. Besides, limiting the number of search
results also cuts down the computation time for the evaluations.

As for the content of the tweets, we used standard stopword-lists (as provided
by the Lucene engine16) in order to filter out (English) stopwords.

16Lucene’s set of stopwords for the English language is: {a, an, and, are, as, at, be, but, by,
for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this,
to, was, will, with}.

59

3. Microblogs

Data: Set T of all tweets within the data set
Result: Evaluation of Recommendation Algorithm

1 begin
2 // Initialisation

3 randomTweet, inputText := null
4 hashtagRecommendations, evaluationResults, hashtags := { }
5 numberOfCorrectRecommendations := 0

6 // Get random tweet from T

7 randomTweet = getRandomTweet(T)
8 hashtags = extractHashtags(randomTweet)
9 inputText = removeHashtags(randomTweet)

10 // Get recommendations

11 hashtagRecommendations = getRecommendations(inputText)

12 // Evaluate Recommended Hashtags

13 foreach r within hashtagRecommendations do
14 if r ∈ hashtags then
15 numberOfCorrectRecommendations++
16 end

17 end

18 evaluationResult = computeMetrics(
19 inputText,
20 hashtagRecommendations,
21 numberOfCorrectRecommendations)

22 return evaluationResult

23 end

Algorithm 2: Basic Evaluation Algorithm

We varied the configurations of the evaluation runs in regards to the following
features:

• Similarity measure

• Weighting scheme

• Ranking algorithm of hashtag recommendation candidates

• Various options for the similarity measures (e.g., the size of n for
nGrams)

60

3.5. Evaluation

• Percentage of the already entered message in order to evaluate how the
quality of recommendations improves in the course of entering a tweet,
i.e. the refinement of recommendations

• Number of recommended hashtags (i.e. we varied k for the top-k recom-
mendations)

These different configurations and the according evaluations are explained and
discussed in detail in the following sections17.

3.5.4. Results

In the following section, the results of the previously described evaluation are
presented. Firstly, the performance of the different similarity measures is pre-
sented and discussed and subsequently, the results obtained by the proposed
ranking methods are elaborated on.

The set-based Dice and Jaccard coefficients inherently perform equally as these
two measures are monotonically related, i.e., the order of hashtags resulting
from Dice and Jaccard are always equal. Therefore, we chose to only incor-
porate the Jaccard coefficient in our evaluations throughout the remainder of
this chapter.

Similarity Measures

In order to be able to estimate the performance of the proposed similarity
measures, we performed the experiments using the scoreRank ranking method
which ranks the hashtag recommendation candidates solely based on the simi-
larity of the input tweet and the tweet containing the hashtag recommendation
candidates (in the case of a hashtag stemming from multiple tweets, the high-
est similarity value is used). Hence, the suitability of the different proposed
similarity measures can be evaluated directly.

Figure 3.8 features a plot of the recall@k values obtained by hashtag recom-
mendations computed based on the proposed similarity measures using the
scoreRank ranking method. This plot shows the performance for the top-k
recommendations in terms of the recall values on the y-axis for top-k recom-
mendations, where k is set to 1, 3, 5, 10, 15 and 20. This plot clearly shows that
the vector-based cosine similarity measures outperform the set-based and the
lexical similarity measures. Cosine similarity with the BM25 weighting scheme
is able to achieve a recall value of 13.49% for k = 1. With increasing k, also

17As not all the evaluations are discussed here in detail, the complete set of charts can be
found in Section A.2 of the Appendix.

61

3. Microblogs

the recall value rises monotonously, achieving a recall value of 29.16% for 20
recommendations. Performing a term frequency-inverse document frequency
(tf-idf) weighting results in a recall value of 29.48% for 20 recommendations.
However, for k being set to the range of 3 to 15, term frequency-inverse docu-
ment frequency weighting performs better. Another important finding of this
evaluation is that the lexical Levenshtein distance measure performs better
than the Jaccard coefficient. For k being set to 1, these two measures achieve
recall values of 2.74%. With k = 20, the recall value is 7.92% for both Dice
and Jaccard coefficients. The better performance of the Levenshtein distance
can be lead back to the fact that this measure is more fine grained than the
bag-based measures where two words are not considered to be equal if these are
not exactly matching. Levenshtein is able to cope with such small distances
of terms or tweets and hence, is less rigid.

The good performance of the two vector-based similarity measure regardless
of which weighting schema is used can be explained by the weighting of terms
which allows for a lowering of the influence of terms which occur frequently.
These terms are presumably not relevant or characteristic for tweets and hence,
these terms do not have any decisive power for the similarity computation. In
contrast, terms which occur infrequently across the corpus are crucial as the
allow for a strong characterization of tweets and hence are a decisive factor for
the similarity. Two tweets which both contain a very sparsely used term are
most likely to have similar content whereas two tweets containing a frequently
used term may not be related at all in regards to content.

●

●

●

●

● ●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Similarity Measure (scoreRank)

top−k Recommendations

R
ec

al
l

●

●
●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

Figure 3.8.: Recall for Top-k Recommendations for Different Similarity Mea-
sures (Ranking Strategy: scoreRank)

62

3.5. Evaluation

Figure 3.9 depicts the precision values obtained by the various similarity mea-
sures (again, scoreRank was used for the ranking of the recommendation can-
didates). As can be seen, the vector based cosine similarity measure perform
best, followed by Levenshtein distance and the bag-based similarity measures.
The best performing similarity measure, cosine similarity with term frequency-
inverse document frequency weighting obtained a precision value of 16.90% for
k = 1. However, already at k = 5, the precision values drop to 7.45% for tf-
idf weighting and 7.08% for BM25 weighting, reaching a low of 3.87%, resp.
3.74% for 20 recommendations. These low precision values can be explained
by the observation that tweets contained in the underlying data set on average
contain 1.32 hashtags (for further statistics see Section 3.2). Hence, already
when recommending five hashtags, on average only one of these hashtags was
originally used and hence, at most one hashtag can successfully be recom-
mended. This naturally leads to low precision values as—in such a case—four
of the five recommended hashtags did not match the originally used hashtags.
Hence, precision values drop significantly with k > 2.

●

●
●

● ● ●

5 10 15 20

0.
00

0.
05

0.
10

0.
15

Precision per Similarity Measure (scoreRank)

top−k Recommendations

P
re

ci
si

on

●

●

●

●
● ●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

Figure 3.9.: Precision for Top-k Recommendations for Different Similarity
Measures (Ranking Strategy: scoreRank)

Figure 3.10 shows the F1-measure for the different similarity measures based
on the top-k (k being set to 1, 3, 5, 10, 15 and 20). This once again shows
the above described findings where cosine similarity performs best, followed
by Levenshtein and Dice and Jaccard coefficients.

63

3. Microblogs

●
●

●
●

●
●

5 10 15 20

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

F1−Measure per Similarity Measure (scoreRank)

top−k Recommendations

F
1−

M
ea

su
re

●
●

●

●
●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

Figure 3.10.: F1-Measure for Top-k Recommendations for Different Similarity
Measures (Ranking Strategy: scoreRank)

Ranking Strategies

As for the evaluation of the different ranking mechanisms, we performed an
evaluation based on all available similarity measures. In particular, we firstly
performed a recall@k evaluation. Figure 3.11 contains the recall values for
all possible ranking mechanisms for all proposed similarity measures for the
top-k recommendations (k being set to 1, 3, 5, 10, 15 and 20). It is impor-
tant to note that the number k of recommended hashtags is most likely to
be rather low in a hashtag recommendation application. This is due to the
fact that the cognition of the user and also the space available for displaying
the recommended hashtags is rather limited. As the process of entering a
tweet is traditionally performed in a short period of time, a user cannot be
presented with a huge list of recommendation candidates. The user is rather
presented with a short, easy to comprehend list of possible hashtags. Hence,
the evaluation results for top-k recommendation with the value k being set to
values k < 10 is very important and once more strengthens the importance of
a highly suitable ranking strategy.

Our evaluations showed that recCountRank and also—regardless of which
ranking method was used—cosine similarity with both BM25 and term frequency-
inverse document frequency perform by far better than the other proposed
ranking methods. Both weighting schemes for cosine similarity perform al-
most equally for all ranking methods.

64

3.5. Evaluation

Overall, the best results in terms of recall were accomplished by the recCount-
-Rank strategy. This ranking strategy achieves a recall value of 30.36% for
k = 20 and is based on the number of tweets within the set of the 200 most
similar tweets from which a certain hashtag recommendation candidate stems
from. Hence, the more similar tweets contain a certain hashtag, the higher
is the ranking of the hashtag. However, the scoreRank strategy, where the
similarity score between the input tweet and the respective tweet holding the
hashtag recommendation candidate is directly used for the ranking of hashtags
performs equally. Using scoreRank, a recall value of 29.48% for 20 recommen-
dations with term frequency-inverse document frequency weighting. For BM25
weighting, a recall 29.16% was accomplished. The recCountRanking strategy
is performed on a broad basis of tweets in a (democratic) voting process. The
more similar tweets feature a certain hashtag, the higher is the ranking of
the corresponding hashtag. In contrast, the scoreRank strategy is based on
the most similar tweet from which the hashtag recommendation candidates
are extracted from. Both of these methods showed to be suitable for the
recommendation of hashtags.

The globalPopularityRank strategy achieves a recall value of 21.19% for k = 20
and 12.43% for k = 5 (cosine similarity with BM25 weighting). Considering
the fact that regardless of the content of the tweet, the globally most popular
hashtags within the data set are recommended, these results can be considered
as a baseline for the evaluation recommendation. The recall value of more than
21% for this rather simple ranking strategy can be lead back to the distribution
of hashtag popularity (as described in Section 3.2.3 and in Figure 3.2). As
many of the tweets featured in the data set (and hence also featured in the
set of random tweets which we used as input for the evaluation) contain these
popular hashtags, recommending the most popular hashtags is bound to match
some of the originally used hashtags. However, our approach is intended to
provide content-sensitive recommendations and hence, globalPopularityRank
is rather seen as a method suitable for e.g. recommending hashtags for input
tweets for which no similar tweets are contained in the data set and hence,
other ranking methods are not able to provide recommendations.

As for the date-based ranking strategies, the recall values obtained are expect-
edly low (as can be seen in Figure 3.11(d) and Figure 3.11(e)). The computed
recall values for k = 5 are 3.40% for dateAvgUsageRank and 3.93% for dateRe-
centUsageRank. For k = 20, these two ranking methods achieve recall values
of 7.21% and 8.11%, respectively. This is due to the fact that no content in-
formation is incorporated in the ranking. However, the proposed date-based
ranking strategies are not aimed at being stand-alone ranking methods, they
are rather aimed at being able to incorporate timely aspects into hybrid rank-
ing strategies. The evaluation for hybrid ranking strategies can be seen in
Section 3.5.4.

65

3. Microblogs

The evaluation of ranking methods showed recCountRank and the scoreRank
methods performed best. Also, these evaluation result show that the similarity
of messages from which hashtags are stemming from can be a good indicator
for how likely it is that a hashtag is suitable for a given tweet.

Refinement of Recommendations

This evaluation is aimed at showing how the quality of recommendations im-
proves as a larger and larger portion of the tweet is entered, i.e. as the user
enters the input tweet. While the user is typing, the hashtag recommendation
computation is performed on the fly. With every newly added character, the
recommendations are recomputed and get refined. The charts shown in Fig-
ure 3.12 depict the recall values of the given recommendations (top-k recom-
mendations, where k is set to 20 recommendations) where the x-axis features
the percentage of the original tweet entered serving as input for the recom-
mendation computation process (25, 50, 75 and 100% of the original tweet).
I.e. for an original tweet featuring 100 characters, we used the first 25, 50,
75 and 100 characters and performed the hashtag recommendation process
for each of these (new) input tweets aiming at evaluating the behaviour of
recommendations during the process of entering a tweet.

Figure 3.12 shows the recall values for this evaluation for all the given ranking
strategies and similarity measures. This figure shows that recCountRank and
also scoreRank perform best also for a small number of characters entered
when using cosine similarity. These ranking strategies reach recall values of
22.02% (recCountRank), 20.10% (scoreRank) for input tweets for which 50%
of the original tweet were entered. Considering the fact that 65.79% of all
hashtag usages occur after 30 characters (as shown in Section 3.2.5), these
results underline the suitability of the proposed ranking methods.

Further evaluation results concerning the precision and the F1 value in terms
of refinement of recommendations can be found in Section A.2.4 and A.2.5.

Hybrid Ranking Strategies

As proposed in Section 3.5.4, also hybrid combinations of the proposed ranking
strategies are evaluated. We chose to evaluate all possible combinations of
ranking strategies with a weighting factor α which is set to 0, 0.2, 0.4, 0.6, 0.8
and 1.0 in the evaluations. The hybrid ranking strategies combining ranking
methods A and B are referred to as “rankingMethodA.rankingMethodB” in
the following. E.g., for “scoreRank.globalPopularityRank” a weighting factor
of α = 0 means that in this particular configuration, only scoreRank is used
whereas a weighting factor of α = 1 means that only globalPopularityRank

66

3.5. Evaluation

●

●

●

●

● ●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Similarity Measure (scoreRank)

top−k Recommendations

R
ec

al
l

●

●
●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(a) scoreRank

●

●

●

●

● ●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Similarity Measure (recCountRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(b) recCountRank

●

●

●

●

●

●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

Recall per Similarity Measure (globalPopularityRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(c) globalPopularityRank

●
●

●

●

●
●

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

Recall per Similarity Measure (dateRecentUsageRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(d) dateRecentUsageRank

●
● ●

●

●
●

5 10 15 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Recall per Similarity Measure (dateAvgUsageRank)

top−k Recommendations

R
ec

al
l

●
●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(e) dateAvgUsageRank

Figure 3.11.: Recall Values for Top-k Recommendations

67

3. Microblogs

●

●

●
● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Ranking Strategy (scoreRank)

Refinement of Recommendations

R
ec

al
l

●

●

●

●

●

●

●

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

JaccardSimilarity

(a) scoreRank

●

●

● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Ranking Strategy (recCountRank)

Refinement of Recommendations

R
ec

al
l

●

●

●

●

●

●

●

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

JaccardSimilarity

(b) recCountRank

●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Recall per Ranking Strategy (globalPopularityRank)

Refinement of Recommendations

R
ec

al
l

●

●

●
●

●

●

●

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

JaccardSimilarity

(c) globalPopularityRank

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Recall per Ranking Strategy (dateRecentUsageRank)

Refinement of Recommendations

R
ec

al
l

●

●

●

●

●

●

●

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

JaccardSimilarity

(d) dateRecentUsageRank

●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

Recall per Ranking Strategy (dateAvgUsageRank)

Refinement of Recommendations

R
ec

al
l

●

●

●

●

●

●

●

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

JaccardSimilarity

(e) dateAvgUsageRank

Figure 3.12.: Recall Values for all Ranking Strategies with Increasing Percent-
age of Tweet Entered

68

3.5. Evaluation

is used. For all other values α, both of the ranking methods are used and
combined according to the formula presented in Section 3.5.4.

Figure 3.13 shows the recall values of hybrid rankings (based on cosine sim-
ilarity and BM25 weighting and top-20 recommendations). This evaluation
shows that hybrid ranking strategies which incorporate either recCountRank
or scoreRank perform best. The best achieved recall value is 32.77% for a
combination of scoreRank and recCountRank with a weighting factor α = 0.6.
Naturally, the combination of the two best performing ranking methods also
leads to the best results. Still, the combination of these two ranking methods
lead to an improvement of the single ranking methods (2.41% improvement
compared with recCountRank and 3.61% improvement for scoreRank). An-
other finding of this evaluation is that the temporal ranking methods (dateRe-
centUsageRank and dateAverageUsageRank) do not improve the recall values
when used in a hybrid rank in combination with scoreRank or recCountRank
at any given weighting factor. Furthermore, both the bybrid ranking meth-
ods recCount.globalPopularity and scoreRank.globalPopularity perform very
stable for α ≥ 0.2

●

● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per RankingMethod (CosineSimilarity)

Weighting Factor

R
ec

al
l

●

● ● ● ●
●

●

● ●

●

●

●

●

●

●

recCount.globalPopularity

recCount.avgUsage

recCount.recentUsage

scoreRank.globalPopularity

scoreRank.avgUsage

scoreRank.recentUsage

scoreRank.recCount

Figure 3.13.: Recall for Hybrid Ranking Strategies (Similarity Measure: Cosine
Similarity w/ BM25 weighting, Top-20 Recommendations)

69

3. Microblogs

3.6. Principal Architecture and Implementation

The following section describes the system architecture and the main com-
ponents of the prototype underlying the evaluation featured in this thesis.
Subsequently, the architecture of a highly scalable system enabling live rec-
ommendations on huge amounts of twitter data is introduced.

3.6.1. Prototypical Architecture

The prototype was implemented in Java aiming at an efficient prototype en-
abling conducting the proposed evaluations which also was flexible enough to
easily change parameters, similarity measures, etc. A component diagram can
be seen in Figure 3.14, the components are described in the following.

MapReduce

Job

MapReduce

Job

Similarity

Computation

Ranking

Data Store

mongoDB

Recommender

Module

...

Twitter API Crawler

Twitter

Tweet Search

Lucene

mongoDB

Figure 3.14.: Prototype Component Diagram

Crawler The crawling of tweets is the basis for the creation of a comprehensive
data set which serves as the basis for the computation of recommenda-
tions. Hence, it is important to design a robust and flexible crawler. The

70

3.6. Principal Architecture and Implementation

implemented crawler (using PHP) uses the Twitter Streaming API18,
which provides access to a random sample of 1% of all tweets published
on Twitter. The crawler sends requests to this API and stores the re-
turned JSON stream containing the tweets and all related metadata to
files. The tweets contained in those files are loaded into the data store
periodically.

Data Store All crawled tweets and the related metadata are stored in Mon-
goDB19, a NoSQL database which provides MapReduce facilities [24].
MapReduce provides a computing model for a massively distributed com-
putation based on key-value structured data. MapReduce works in two
stages: (i) the Map stage where the task is split into subtasks and each
node performs the according computations (mostly done on local data)
and (ii) the Reduce stage where the results computed by the single nodes
are collected and aggregated in order to obtain the final result.

For this prototype, statistics required for the computation of recommen-
dations (as described in Section 3.2, like the number of total occurrences
of hashtags, the average age of usage, etc.) are computed by MapReduce
jobs.

Fulltext Index As for the fulltext index which holds all tweets and serves
as the central component of the prototype, we rely on Lucene20 which
is a very efficient and popular open source fulltext index maintained
by the Apache software foundation. However, Lucene did not provide
implementations for the similarity measures we intended to evaluated.
Hence, we implemented these measures for the Lucene store such that the
used similarity measures can easily be interchanged and new measures
can be implemented and added efficiently.

Recommender Module As for the recommender system, the core of the im-
plementation was done in Java and relies on both the MongoDB storage
and also the fulltext index. Furthermore, for the computation of the
statistics underlying the ranking mechanisms for the recommendation
candidates, MapReduce jobs were used.

Figure 3.15 depicts the (data) workflow underlying the prototype, consist-
ing of a preprocessing workflow where data is crawled, stored locally in files
and subsequently loaded into the MongoDB data store where the according

18https://dev.twitter.com/docs/streaming-api/methods

19http://www.mongodb.org

20http://www.lucene.apache.org

71

3. Microblogs

· Twitter API

Crawler

· Periodically
perform bulk
load of new
data

MongoDB

· Store tweets as
JSON

· Gzip files

File

· Tweet Text
· Entities

(hashtags,
users)

· Metadata

MapReduce

· Popularity of
hashtags

· Usage statistics
· Co-occurrence

· User
Interaction

FrontEnd

· Similarity
measures

· Ranking

Recommender

System

Preprocessing

· Load tweets
and metadata
from file

Fulltext

Index

Recommendation

Figure 3.15.: Prototype Workflow

statistics are computed by performing MapReduce jobs. The recommenda-
tion workflow is based on the previously computed statistics and consists of
loading the crawled data into the fulltext index, based on which the corpus is
searched for similar tweets and the according recommendations are computed.
The frontend is responsible for any user interaction and with every keystroke,
new input data is delivered to the recommender system.

3.6.2. Architecture of a Scalable Live-System

Being able to perform live recommendations for a huge amount of data is a
challenging task as it makes high demands on the underlying architecture.
These requirements include being able to crawl millions of tweets per day, to
store these and most importantly, to perform the recommendation computa-
tions and the according preprocessing steps based on hundreds of millions of
tweets within the corpus in an efficient manner such that a multitude users
can be provided with on-the-fly computed hashtag recommendations at the
same time. In the following, we present an architecture for such a scalable
and efficient live-recommender system for hashtags.

We propose to facilitate a highly distributed architecture underlying the actual
recommender system. Hence, this architecture provides possibilities to scale
out by adding further nodes. A component diagram can be seen in Figure 3.16.
The different components are described in the following.

72

3.6. Principal Architecture and Implementation

Online Distributed ComputationsOffline Distributed Computations

Distributed Storage

Distributed Fulltext IndexMapReduce

Crawler

Node

TweetsFT Index

Node

TweetsFT Index

Node

TweetsFT Index

Node

TweetsFT Index

Reduce Aggregation and

Ranking

Recommender System

User

Cache Layer

Figure 3.16.: Scalable Architecture

Crawler

As for the gathering of tweets underlying the recommender engine, a crawler
is aimed at gathering a diverse and representative set of tweets in an efficient
and robust manner. The current Twitter API freely provides a random sample
of tweets offering a wide range of tweets in regards to countries, languages,
topics, etc. Due to the current limitations in regards to the number of API

73

3. Microblogs

calls allowed per hour, the set of crawled tweets could be restrained around
certain languages or countries where the tweets originate from in order to focus
the crawled tweets and to increase the fraction of valuable tweets in regards
to their suitability for the later computation of recommendations.

Data Storage

The central storage facility is required to hold terabytes of data and to provide
scalable, parallelizable access for any further computations. We propose to
make use of a distributed file system which allows for data storage distributed
among a large number of nodes. Such a distribution enables a redundant
storage of the crawled corpus ensuring high availability of data. Based on
such a storage system, a fulltext index can be shared among the nodes such
that large amounts of indices may be stored and queried efficiently. Still, the
crawler has to be able to cope with high amounts of incoming tweets.

Distributed Recommendation Computation

On top of the proposed distributed data storage, a framework for distributed
computations is also required. This framework is required for two tasks: (i)
the computation of statistics and heuristics underlying the recommendation
computation and (ii) searching the sharded fulltext index. Hence, we propose
to make use of MapReduce jobs based on the distributed file system for the
computation of statistics and heuristics. These computations cannot be per-
formed live due to time limitations and hence, are performed offline at regular
intervals in order to keep the statistics up-to-date. The results are subse-
quently stored in the distributed storage system. As for the computation of
search results based on the sharded fulltext index, after a distributed search
of the indices on each single node, a means for the aggregation and ranking of
the individual search results has to be implemented on top of the distributed
file system. This allows for online fulltext search which serves as the basis for
the live (online) recommender system, which also accesses the precomputed
statistics.

In order to further enhance the performance of the system, we propose to
introduce a cache layer to the recommender system component. This cache
layer aims at identifying tweets possibly related to currently trending hashtags
(thus, occurring at a high frequency) by precomputed patterns and keywords.
These patterns are extracted and computed offline periodically by MapReduce
jobs. If such a pattern matches the tweet the user is currently entering, the
hashtags associated with this pattern are presented to the user. If none of the
patterns is matched, the standard recommendation computation is initiated.
Again, the frontend is responsible for any interaction with the user and en-
ables the user to enter tweets quickly and easily. The frontend presents the

74

3.6. Principal Architecture and Implementation

user with recommendations and with every keystroke, the current tweet con-
tent is sent to the Cache Layer and—depending on whether the cache layer
contains any suitable recommendations or not—the recommender system in
order to retrieve new and up-to-date recommendations suitable for the entered
information.

As for updating the statistics and the sharded fulltext indices, the interval
between updates is performance-critical as trends in regards to hashtag pop-
ularity may emerge at a high pace in Twitter (e.g., in the case of events and
disasters, etc.). Hence, the goal is to find a balance between not being forced
to constantly compute statistics and still being able to reflect trends for the
recommendation of hashtags. Hence, a short computation time for statistics is
required. This can be achieved by making use of incremental MapReduce jobs
which compute heuristics for the newly inserted data and add these results
to the already computed persistent results of previous MapReduce computa-
tions.

Figure 3.17 depicts the new workflow for the computation of recommenda-
tions.

· Twitter API

Crawler

· Store tweets as
JSON

· Gzip files

File

· Tweet Text
· Entities

(hashtags and
users)

· Metadata

· Popularity
hashtags

· Trends
· Patterns for

caching

· Pattern/rule
based recs

· Trending
hashtags

Cache Layer

· User
Interaction

· High Usability
· Efficient

handling

FrontEnd

· Similarity
measures

· Ranking

Recommender

System

Preprocessing (Offline)

· Load tweets
and metadata

· Distributed FT
Index

Distributed

Fulltext

Index

Recommendation (Online)

MapReduce

Figure 3.17.: Workflow for Live-Recommendations

75

3. Microblogs

3.7. Related Work

This section is concerned with research related to hashtag recommendations.
Therefore, multiple areas of research are examined: (i) general findings and
about the Twitter platform, its users and their behaviour, (ii) works particu-
larly concerned with hashtags, (iii) recommendation-based approaches on the
Twitter platform, (iv) the related research area of tag recommendations within
various other social networks.

Our approach was introduced in 2011 [119] and is the first approach which
deals with the heterogeneity and sparseness of hashtags within messages on
Twitter by facilitating a recommender system for the suggestion of suitable
and uniform hashtags. Kywe et al. [62] presented an approach which combines
both the hashtags contained in the set of the most similar tweets and a user-
profile which is based on the hashtags the user previously made use of (like
we sketch in future work, cf. Section 3.8) in 2012. The data set underlying
the evaluation of this approach contains 2.3 million tweets and was crawled by
retrieving the tweets of 150,000 Singapore-based users. The authors evaluated
the proposed approach in regards to the hit ratio based on historic data.
They define the hit ratio as the number of evaluated tweets for which at
least one hashtag was recommended correctly. Kywe et al. reached the best
hit ratio of 37% with a configuration where 10 hashtags are recommended
and the top-50 similar tweets and the top-5 similar users are incorporated
into the recommendation process. However, if a tweet originally contains two
hashtags, the hit ratio would be 1 whereas in our evaluation, the recall value
would be 0.5. This difference in the evaluations makes a direct comparison of
the performance of these two approaches hardly possible.

3.7.1. Twitter

Twitter has been a popular topic for researchers coming from very diverse
disciplines. Due to Twitter’s hugely dynamic nature, tweets have e.g. been
facilitated to detect earthquakes or natural hazards in real time [92, 110].
Similarly, based on the dynamic nature and the huge potential stemming from
millions of users making their opinion on certain topics public via tweets,
researchers proposed to use such data to predict election results [109] or to
predict stock market movements [12].

TwitterRank [113] shows that the follower-followee connection is based on
homophily [71] which basically means that both users share interest in one or
more particular topics. Based on a data set of tweets, the authors analysed the
behaviour of users when following back their own followers. They found that
the number of followees of a user is directly related to the number of followers,
the more followees a user has, the more followers she has (and vice-versa).

76

3.7. Related Work

In regards to the following-back behaviour of users, the authors showed that
72.4% of all Twitter users follow back more than 80% of their own followers.
Moreover, 80.5% of all users have 80% of their followees follow them back.
In order to be able to compute shared topical interests, the authors detected
the topic of tweets by making use of a Latent Dirichlet Allocation Model.
Based on this information, the authors propose to define the influence of a
user not solely by the number of followers a user has, but also on the expertise
of Twitter users in different topics. Hence, the authors propose new measure
the influence of Twitter users named TwitterRank. This measure is based
on the PageRank algorithm [79] originally published by Brin and Page which
was created to compute the influence of websites based on the link structure
of the web. PageRank features a random surfer model which computes the
probability of a surfer who randomly follows links within webpages to come
across a certain website. In order to adapt this model for measuring the
influence of Twitter users, the random surfer model has to be adapted such
that the following of links corresponds to traversing the the follower-followee
graph of Twitter users. Furthermore, the random surfer model is adapted such
that the following of links is based on the topical relatedness of the according
users.

The work by Huberman, Romero and Wu [49] was one of the first works
dedicated to an analysis of the Twitter network. The main finding of the
analysis the authors conducted based on a set of 309,750 Twitter users is that
the number of followers of a user is directly related to the number of posts the
user publishes. Thus, the more followers a user has and the more attention a
user receives by her followers, the more posts are published by this specific user.
However, this hypothesis only holds up to a certain number of followers, the
number of posts eventually saturates as the number of followers still increases.
They also found that there exists a relation between the number of friends (in
this case a friend of a certain user A is defined as A having sent more than
two direct messages to another user B). This function of the number of posts
and the number of friends of a user does not saturate and hence the authors
propose that the number of friends of a user is a more accurate estimate for
the activity of a user within the Twitter network. Another finding of this work
was that the number of friends is very small in comparison to the number of
followees a user has. As the number of followees increases, the number of
friends of an average Twitter remains constant after having reached a certain
number of followees. The authors explain this by the fact that Twitter enables
users to easily follow other users. However, friendship requires more effort and
at least two direct messages exchanged.

In regards to search facilities on Twitter and the shortcomings of traditional
keyword search, Abel et al. [1] propose a faceted search approach for tweets by
enriching the semantics of tweets. This enrichment is achieved by extracting

77

3. Microblogs

entities within tweets and linking these entities to external sources. Based on
this information, facets can be created where the subject of the facet corre-
sponds to the tweet, the facet type corresponds to the type of the entity (e.g.,
location) and the facet value corresponds to the mentioned entity (e.g., New
York). This enables users to explore tweets by browsing through facets.

3.7.2. Hashtags

The topic of hashtags has become very popular for researchers throughout
the last years. This section describes work concerned with hashtags and the
hashtagging behaviour of Twitter users.

Tsur and Rappoport [108] propose an approach which aims at predicting the
spread of an hashtags within the Twittersphere within a given time frame.
The spread of hashtags (or ideas) is characterized by a normalized count of
occurrences within the given timeframe. For the prediction, the authors base
their approach on a regression model in which hashtags are presented by four
different feature vectors: (i) the content of the hashtag (e.g., orthographic
features, the length of the hashtag or the location of the hashtag within the
tweets), (ii) global tweet features (the context of the hashtag characterized
by the words appearing within tweets together with the hashtag), (iii) graph
topology features (e.g., the retweet ratio or the average number of followers
of users who used this specific hashtag) and (iv) global temporal features (the
number of weeks since the first occurrence of the hashtag). The evaluations
showed that a hybrid combination of the four proposed feature types yields
the best results.

An approach widely related to the approach proposed in this dissertation is
presented by Esparza et al. in [33]. The authors propose an approach aiming
at automatically creating a categorization of tweets. A category can be char-
acterized by a set of tweets containing information related to the according
category. This approach characterizes a category by the set of terms contained
in the tweets contained in the category. Hence, a bag-of-words approach based
on the Lucene fulltext index (hence, tf-idf is used as a weighting schema and
similarity measure) is proposed which, for each new input tweet, is compared
to the already existent tweets and the related category. Subsequently, the
top-ranked category is proposed to the user. This approach, in contrast to our
proposed solution, adds another layer above the microblogs for their catego-
rization and is only able to deal with a predefined set of categories. Further-
more, the initial assignment of tweets to categories has to be accomplished
manually in a first step unlike our approach, which does not require such a
manual preprocessing of the data set. Similarly, [55] aim at assigning tweets
to six different topical categories (books, games, movies, photography, poli-

78

3.7. Related Work

tics, sports) which are extracted from the hashtags occurring in these tweets.
The categorization is based on feature vectors containing (i) the content of the
original tweet without an actual URL, (ii) the content of the tweet including
the URL, (iii) HTML of the webpage the URL links to and (iv) metadata
extracted from this webpage. The authors then used a Naive Bayes classifier.
The results showed that incorporating metadata extracted from (structured)
webpages can contribute to a better categorization of tweets.

Potts et al. [85] studied the hashtagging behaviour of users during two dis-
asters: the earthquake in New Zealand in 2010 and the earthquake in Japan
in 2011. During these two quakes, Twitter was extensively used to spread
information about the happenings. The authors analysed the hashtags used
during these two disasters and found that a very heterogeneous set of hash-
tags was used. The authors showed that users tried to fight this heterogeneity
manually, like in the following tweet.

#earthquake Apparently the official hashtag is

#eqnz; #doingitwrong. Glad someone’s got priorities

sorted.

posted by @adzebill on 2010-09-04

The authors call for an improvement of the way how hashtags are used and
treated pointing at the proliferation of hashtags during the above mentioned
natural hazards, which is the main problem which is tackled in the approach
presented in this thesis.

Lehmann et al. [65] analyzed the popularity of hashtags over time. They
found that there are three temporal patterns regarding hashtag popularity:
(i) continuous popularity, (ii) periodic popularity and (iii) isolated peaks. The
latter pattern was analyzed in detail and the key finding of this work is that
hashtags that are primarily used before reaching a peak in terms of popularity
are typically related with either scheduled events or specific moments in time.
Hashtags which are mostly used before and after the peak are mostly associ-
ated with endogeneous factors where attention is intensified by a propagation
of the hashtag. Furthermore, hashtags which are primarily used after already
having peaked are mostly related to unexpected events.

The behaviour of scientists on Twitter especially during conferences and as
a medium for spreading scientific messages has been studied by Letierce et
al. [66]. The authors first analysed how researchers of the semantic web
community make use of different services to spread information. This study
revealed that the most popular medium for researchers of this community is
Twitter (92% of all participants do have a Twitter account). In a next step,

79

3. Microblogs

the authors analysed tweets related to three different mayor conferences in the
field. The mayor findings of this study in regards to hashtags are that (i) the
research community members make use of hashtags more frequently aiming
at increasing their network and (ii) hashtags mostly revolve around technical
terms, events and fields of research.

Carter et al. [18] observed that hashtags are not only exclusively used for
making tweets more searchable, but rather also serve as the basis for statistics
about trending topics within the Twittersphere. The fact that a multitude
of hashtags describe the same topic biases such statistics. The main goal
of this work is the robust translation of hashtags between languages as the
authors state that hashtags are used differently in different languages and
in different locations. This translation is based on gathering a large set of
messages containing the hashtag which has to be translated, translating these
messages and extracting the most characteristic terms in regards to their tf-
idf measure. These terms are then used for querying Twitter for messages
containing these terms. From the resulting tweets, the hashtags are extracted
and proposed as translations for the input hashtags.

Hepp [41] proposed to incorporate triples into microblogs aiming at creating
a common knowledge representation. In his work, Hepp presents a syntax for
the inclusion of triple-statements into microposts. By using such triples in mi-
croposts, users are enabled to define relations between different hashtags (e.g.,
subtag-of relations). Hence, an ontology of hashtags is created which can be
exploited for the resolution of synonymous hashtags or simple reasoning tasks.
However, the inclusion of triples is not popular on Twitter. Furthermore, by
defining an ontology of hashtags and other entities, the problem of synonyms is
not resolved, it is rather shifted towards a broader search task where searches
may be conducted by using all hashtags declared as synonymous within the
ontology in order to find all relevant information. This is—in contrast to our
proposed approach, which aims at keeping the hashtag vocabulary homoge-
neous already at the time of insertion—more a treatment of symptoms of the
proliferation of hashtag vocabularies. Another semantic web-based approach
has been proposed in [81]. Passant et al. propose to incorporate microblogs
and the according metadata into the Linked Open Data cloud by making use
of the very popular ontologies FOAF (Friend-of-a-Friend) and an extension of
SIOC (Semantically-Interlinked Online Communities). By facilitating seman-
tic lookup services, hashtags are turned into unique URIs and are enriched
with e.g. geographic information and due to this added information, the in-
formation contained in the microblog is also accessible by other applications
and are openly (re)-usable. Stankovic, Rowe and Laublet [103] also propose to
extract information from tweets and map this information with Linked Open
Data sources, especially in the field of conference talks.

80

3.7. Related Work

Efron [29] also depicts an approach aiming at retrieving hashtags for a certain
topical query in order to find tags and hence conversations which might be
interesting for a user to follow. However, the authors mainly propose such an
approach for the expansion of queries for relevance feedback.

Laniado and Mika [63] present different metrics which aim at identifying hash-
tags which serve as strong identifiers for tweets, namely (i) frequency, (ii)
specificity, (iii) consistency of usage and (iv) stability over time. The authors
propose to make use of the frequency of the hashtag as either the number
of users which make use of a certain hashtag or as the number of messages
containing this hashtag. Beside the frequency, the specificity describes how
similar the semantics of the hashtag and the word underlying the hashtag are.
The consistency of usage is intended to ensure that a hashtag is used in the
same context over time. The stability over time is used to make sure that a
hashtag is used over a long period time and not subject to some temporally
local trend.

Kouloumpis et al. [58] make use of hashtags to create a training set for sen-
timent analysis on tweets. They use the most frequent hashtags occurring in
their data set, manually assign a sentiment (negative, positive or neutral) to
these hashtags and use this data for the training of their classifier.

3.7.3. Recommendations in the Twittersphere

In the field of recommender systems, there have been numerous approaches
aiming at facilitating Twitter for recommendations or to provide Twitter users
with recommendations.

The Twittomender approach by John Hannon et al. [40] provides evaluations
for different approaches for establishing a profile of a certain user. These
profiles are used for both user search and—more importantly—recommending
users which might be interesting to follow for a certain user. The authors
propose to use content-based profiles and profiles based on collaborative fil-
tering. Three content-based profiles are proposed: (i) the profile is formed by
the tweets, (ii) the tweets of all followers of the user are used for the profile
or (iii) the tweets of all followees are used. As for the CF-based profiles, the
authors state two approaches: (i) the use of all followees of the user and (ii)
the use of all followers of the user. Apparently, a hybrid approach combining
both CF-based profiles performs best in terms of precision. A similar approach
has been facilitated by [6], however in this approach, also the topology of the
network surrounding the user is taken into account.

81

3. Microblogs

The Tadvise project [78] aims at finding topical hubs within Twitter users
which can be used to broadcast tweets to a broader audience. The system is
able to recommend (i) users that may act as hubs for broadcasting a message
about a certain topic by retweeting it to their followers and (ii) a categorization
of followers of a certain user in terms of identifying all users tagged with a
term mentioned in the given input tweet (to find a relevant audience for the
given tweet). Therefore, the authors propose to build a user profile for every
participating user. Such a user profile is built by analyzing the Twitter lists
the corresponding user is part of. As lists can be seen as a tag for a set of
Twitter users, the authors make use of these lists and compute a weighted
list profile based on the given information. The weighting is performed based
on the ranks of the users which are part of the list, in particular these ranks
are summed up for the weight. This ranking of users is computed based on
the number of followers of the according user. As for the detection of users
tagged with a certain term, the authors propose to build the aforementioned
user profiles of the followers and the followers of the followers of the given user.
These user profiles are subsequently aggregated and then clustered into those
tags which frequently occur and those tags which occur infrequently. The
former are then recommended to the user, as they are likely to be interested
in the given tweet. As for the detection of hubs for a certain tweet, the authors
propose to build a directed graph by adding all the followers of the given user.
Moreover, all followers of the followers who were tagged with a term (in the
computed user profile) mentioned in the input tweet are added to the graph.
Then, the hubs are detected within the graph by selecting the users having
the highest number of followers.

The work published by Chen et al. [19] presents a content recommender sys-
tem named zerozero88 which is based on Twitter. Its aim is to provide users
with content recommendations which are interesting to the user. More specif-
ically, URLs containing information the user might be interested in are rec-
ommended. The authors especially focused on three main modules: (i) the
generation of candidate sets of tweets, (ii) the ranking of tweets based on topic
relevance approaches and (iii) the ranking of tweets based on a social process.
The generation of a set of candidate URLs based on which the recommenda-
tion of content for a certain user A is implemented by two different approaches:
one candidate set is generated from all tweets of all followees and the followees
of the followees of user A. The authors assume that a user A always follows
other users based on his interests and therefore, URLs posted by such users
seem to be highly interesting to user A. The second approach is to use the
most popular tweets on Twitter, regardless of who posted the URL. As for
the ranking of tweets based on topic relevance, the authors propose to use
bag-of-words-profile to determine the relevance of a certain topic for user A.
The so-called Self-Profile of a user is the bag-of-words of all the user’s tweets
and the so-called Followee-Profile is defined by the Self-profile of all followees

82

3.7. Related Work

of the user. Based on these two profiles, the ranking of URLs is computed by
the overlap between the bag-of-words profile for a certain URL and the two
types of profiles. The authors also propose to make use of social factors for the
ranking. Hence they present a social ranking process which also incorporates
the relation of user A to user B who posted a certain URL and the frequency
of posts by user B. The evaluation of these approaches was conducted by user
tests which showed that the best performing approach was the combination of
the candidate set generated by the tweets of all followees and their followees
and a ranking based on a social ranking process based on the Self-Profile of
the user. For this combination of approaches, the test users attested that 73%
of all URLs are of interest for them.

Twitter is also used to enhance ranking mechanisms of recommender systems.
Phelan et al. [84] propose a recommender system which aims at recommending
news items to users. Therefore, RSS feeds of news articles are crawled which
serve as the basis for the recommender system. At the same time, tweets
are crawled which are used to enhance the ranking of the recommended news
articles. This is done by computing the overlap between the news articles
and the tweets, i.e. the more words are mentioned in both the tweet and
a corresponding article, the higher the rank of the article is. The authors
propose three different ranking strategies: (i) ranking based on the public
timeline (the most recent tweets on the Twitter platform), (ii) ranking based
on the tweets of friends of the user the recommendations are computed for
and (iii) as a baseline method, a content-based approach is facilitated, where
ranking is solely done based on how often a certain topic is contained in the
whole RSS data set. The user evaluations showed that the friend-based ranking
approach performs best in terms of click-thru data, whereas the analysis of the
user questionnaire showed that users would prefer the ranking based on public
tweets. The task of news recommendations has also been tackled by Abel
et al. [2]. The authors present a news recommendation service for Twitter
users and explore different ways of creating a user-profile aiming at high-
quality of personalized recommendations. Such a user-profile can be built on
top of (i) the hashtags in the user’s tweets, (ii) the entities recognized within
the tweets and (iii) the topics featured in the user’s tweets. The authors
furthermore propose to enrich the given tweets with either entities recognized
within the tweets or entities extracted from URLs which were featured within
the tweets. The best results in regards to precision and recall of the computed
recommendations were achieved by using a entities-based user-profile which
was enriched by external news resources.

As for the recommendation of user-created groups in the Orkut social network,
Spertus et al. [101] evaluated different similarity measures for this recommen-
dation task. These similarity measures rely on the overlap of users being part
of the different communities. The authors argue that community memberships

83

3. Microblogs

are rich enough for serving as a basis for recommending suitable communities
to a community as a whole. Hence, the recommendations computed are not
computed on a per-user basis, rather on a per-community basis. The authors
did a test-user study and evaluated the performance of six different similarity
measures in terms of user acceptance of the recommendations. The outcome
of this study was that the relatively simple L2-measure (cosine similarity of
the binary vectors of group memberships, i.e. the vector contains an entry for
each user, 1 if the user is member of the according community, 0 if she is not
a member) performed best.

3.7.4. Tag Recommendations

The recommendation of tags for (mostly online media) resources has been a
popular research area since the spread of the web 2.0 paradigm. Traditional
tagging systems are concerned with the annotation of items aiming at being
able to enhance search capabilities on these items. Popular tagging systems
are concerned with photos (e.g., the Flickr platform21), bookmarks (e.g., the
delicious platform22) or scientific publications (e.g., Bibsonomy23). The differ-
ence between tag recommender systems and traditional recommender systems
(as presented in Chapter 2) is that traditional recommender systems are based
on two dimensions: users and items based on which recommendations are com-
puted. Tag recommender systems add another dimension, namely tags.

Ames and Naaman [5] analysed the different incentives for users to tag pho-
tos and the authors propose a two-dimensional classification describing user
motivation to tag photos. The first dimension is sociality which describes for
whom (self or others) the tags are intended to be of use for. The second di-
mension is function which describes to main aim of the tag. This classification
leads to four types of motivations: (i) self/organization: users use tags for
themselves in order to be able to (re)find the previously uploaded photos, (ii)
self/communication: users provide contextual information about the photos
(e.g., names of people pictured, etc.) for themselves, (iii) social/organization:
users tag photos in order to enable other users to find these photos and (iv)
social/communication: users provide contextual information for other users.
The authors found that the primary motivation of users to tag photos is or-
ganization rather than the communication factor.

Sigurbjörnsson et al. [99] proposed a tag recommendation algorithm for the
Flickr platform. This algorithm is based on the co-occurrence of tags on

21http://www.flickr.com

22http://delicious.com

23http://www.bibsonomy.org

84

3.8. Conclusions and Future Work

images, i.e. the fact that two tags are used for the same image implies that
these tags are related. Hence, it is limited the sense that recommendations can
only be provided for partly tagged images (at least one tag has to be added to
an image in order to receive further recommendations). In contrast, Jäschke et
al. [52] model the task of tag recommendations as a graph problem. The graph
consists of vertices for users, items and tags and edges for the corresponding
relations. Tag recommendations are ranked by a PageRank-like algorithm
which reflects that tags which are used for important items by important
users may also be important. Other tag recommender systems e.g. rely on
learning algorithms, as Lipczak in [69] where for the recommendation of tags
in the Bibsonomy bibliographic database, further sources are exploited. In
particular, the authors propose to extract tag candidates from the item’s title,
tags which have already been used by the user and also tags which have already
been used for a certain item. The evaluations showed that recommendations
based the user’s previous tags perform best. Other approaches are based on
collaborative filtering (Nakamoto et al. [77]) or k-Nearest neighbour detection
(Gemmell et al. [37]).

Still, the recommendation of tags for certain online resources is quite different
from the recommendation of hashtags within microblogging services. Firstly,
the time of recommendation is different: traditional tag recommendations
are performed in a second step after the particular item was added whereas
hashtag recommendations have to be provided already during the time of
insertion or sending. Secondly, traditional tags are considered as metadata
whereas hashtags also directly serve as content of a tweet. Furthermore, our
current approach is solely based on the content of the tweet, which is at most
140 characters long, whereas traditional tag recommender systems are mostly
based on more information about the items to be tagged. Another difference is
the vast dynamicity and flexibility of hashtags in Twitter as new and trending
hashtags may evolve at a fast pace due to the fast pace in which messages are
spread on Twitter.

3.8. Conclusions and Future Work

In this chapter, we proposed a recommender system for hashtags in microblog-
ging environments and the according recommendation and ranking algorithms.
The comprehensive evaluation showed that such a recommender system is ca-
pable of providing the users of a microblogging platform with suitable recom-
mendations for hashtags reaching recall values of about 33%. These recom-
mendations aim at establishing a homogeneous vocabulary of hashtags which
contributes to better search performance. Also, a more homogeneous set of
hashtags is able to channel conversations about a certain topic.

85

3. Microblogs

Still, the proposed approach may be enhanced in future work. Our analysis of
the crawled data set showed that 12% of all hashtag usages occur at the very
first position of the tweet. This fact constrains our approach in a sense that—
if there is no content of the tweet available—the proposed recommendation
approach is not able to provide recommendations. However, bootstrapping the
recommender system with (i) hashtags the user previously used in her tweets
and (ii) the most popular overall hashtags, which might even be personalized
(e.g., using geographic aspects), is a possible solution to overcome this well-
known cold-start problem for recommender systems.

The crawled corpus is of reasonable size, however—due to the Twitter API
constraints—only a small fraction of the corpus stems from the recent past
which restricts the ability to dynamically respond to trends in regards to the
provided hashtag recommendations. Hence, crawling at a higher bandwidth
in terms of the number of gathered near-realtime tweets would contribute to a
better recommendation performance for hashtags having become trending in
the more recent past.

In regards to the semantics of tweets, various aspects may contribute to an
optimization of the proposed approaches. As described in Section 3.5.4, the
performance of the proposed approach is constrained by the vocabulary miss-
match problem (as e.g. described in [72]). Hence, a very important future
work task is performing a content analysis of tweets in order to be able to
grasp the topic of the tweet in order to be able to perform content-sensitive
hashtag recommendations. Such information can e.g. be incorporated to our
approach by implementing query expansion in regards to the detected topics
in order to be able to retrieve tweets which might not be syntactically sim-
ilar, but semantically (topically) similar. Probabilistic topic modelling [104]
as latent semantic analysis or latent dirichlet allocation have already been fa-
cilitated for the analysis the content of tweets, e.g. in [47, 56, 86]. Another
approach is to make use of entity recognition aiming at extracting entities (per-
sons, locations, events, etc.) from the tweets and matching these. This can
be implemented by e.g. making use of the OpenCalais API24 which provides
a service for entity recognition. Also, sentiment analysis for Twitter messages
has been addressed by various researchers (as in [80, 58]) and may be used to
recommend hashtags according to the “mood” of the tweet or the user. This
would also require a classification of hashtags into different sentiment classes.
Yet, not only the sentiment of a tweet is relevant.

Concerning the ranking of hashtags, also metadata such as the geographic
location of the user may be useful as hashtags can be ranked according to
local trends and preferences. Furthermore, an analysis of the social network

24http://www.opencalais.com/

86

3.8. Conclusions and Future Work

of a certain user is also part of future work as studies showed that a user is
more likely to adopt hashtags which he is exposed to multiple times. Hence,
as a user is exposed to the tweets of users featured in the user’s social graph
more often, these tweets and hashtags influence the tweeting behaviour of the
respective user and hence, are worth incorporating in the hashtag recommen-
dation approach.

In regards to the evaluation of the proposed approach, a user study may also
contribute to better understand the user’s needs and requirements. Further-
more, the conducted evaluation poses the problem that it is a rather narrow
evaluation as it assesses whether the original hashtag of a tweet may be rec-
ommended. However, there may have been even more suitable hashtags which
cannot be evaluated and assessed automatically. Such an evaluation can only
be conducted by test-users in live experiments.

87

CHAPTER 4

Semistructured Information
Systems

As the web advances to a web of information producers, users are currently
faced with two options regarding the way in which information is stored online:
(i) to store information as fulltext and (ii) to store information in a fully
structured manner. When choosing the first option, information does not
have to adhere to any structure, the user is free to use (or rather not use) any
arbitrary structure she would like to use for storing the desired information.
The main advantage of such an approach is that the user is able to store any
kind of information and does not have to cope with any limitations in regards
to the structure of the information to be entered. In contrast, the second
approach requires the user to adhere the information to a predefined structure
(also referred to as “schema”). Such structured storage is especially beneficial
in systems or platforms where all information is structured equally. Traditional
applications which are based on such a storage paradigm are e.g. (relational)
databases in the banking sector or in business, where e.g. catalogs of goods are
stored. The products listed in such a catalog all are structured the same way,
they e.g. all feature a product number, name, description, price, etc. The main
advantage of this approach is that due to the predefined structure, all data

4. Semistructured Information Systems

operations can be optimized based on the structure and hence, huge amounts
of data can be dealt with in an efficient manner. However, trying to store data
which does not adhere to the predefined schema might not be possible at all
and poses a problem. One possible solution to this problem is extending the
predefined structure to meet the new requirements (in relational databases,
this would be realized by adding one or more columns to the respective table).
However, when having to pursue such a strategy multiple times, the size of
the resulting schema increases which potentially leads to a sparse data set as
not all information required by the schema might be available for all items.
Also, the task of having to adjust the existent structure can be tedious and
time-consuming. Thus, structured storage can be highly optimized however it
comes at the price of lowered flexibility in regards to schema changes and new
requirements to the structure. Such a lack of flexibility also implies that the
user may not be able to store all information she wants to store.

In today’s online social media platforms one of the primary goals is to encour-
age users to participate. Such participation can be manifold: communicating
with friends, engaging in discussions and also being part of a community which
creates and maintains information, like on Wikipedia. Constraining a partici-
pating user in regards to the structure of information she wants to store might
lead to a lowered motivation and less data entered. The Wikipedia platform1

mainly features fulltext, as can be seen in Figure 4.1 which depicts an excerpt
of the Wikipedia article about Austria2. The fulltext of articles enables users
to easily add information without having to cope with schema constraints.
The community of Wikipedia users is very committed and hence, fulltext in-
formation is maintained and modifications are examined closely. However,
focused search on such data is hardly possible. Querying Wikipedia for all
countries which have more than 5,000,000 inhabitants and an area of less than
80,000 km2 is hardly possible. Computing the answer to such a query based
on fulltext information would require the automatic extraction of the queried
facts, which can be a an erroneous and tedious task. Based on these pre-
viously extracted facts, all countries fulfilling the query’s constraints can be
selected.

Due to the shortcomings of both storage approaches described above (fulltext
and fully structured), the semistructured storage paradigm aims at combining
the benefits of both of these approaches. During the last years, the most
prominent representative of semistructured data was to model data as triples
which feature a subject, predicate and an according object. By using such a

1http://www.wikipedia.org

2http://en.wikipedia.org/wiki/Austria

90

Figure 4.1.: Fulltext of an Article (Austria) on Wikipedia

triple notation, any real-world object can be described. Austria’s number of
inhabitants can be modelled as a triple as can be seen in the following:

<Austria> <i nhab i tant s> <8 ,414 ,638>

The information modelled as a triple in the above example features structure
which e.g. enables querying for all countries having more than 5,000,000 in-
habitants by selecting all triples featuring a predicate “inhabitants” and an
according object value higher than 5,000,000. Subject, predicate and object
may be chosen freely by the user at the time of storage. However, the down-
side of this freedom is that different users may choose different predicates for
describing semantically equivalent information, e.g., other users could store in-
formation about population numbers using the predicate “population”. Such
a behaviour leads to incomplete search results because when querying the set
of triples for all entries featuring the predicate “inhabitants”, the search re-
sult does not incorporate triples featuring the predicate “population”, which
semantically also contain information relevant to the stated query. As can
be seen, proliferation and heterogeneity of the structure of data are a severe
threat for the performance of search facilities based on this data.

To tackle the problem of a heterogeneous set of predicates and objects, we
propose to use a recommender system which guides the user during the process
of entering information by providing suitable recommendations for predicates
and objects. This approach allows users to still enter any information they
would like to enter, however the recommendations provide means to easily
enter data adhering to a common structure aiming at a homogeneous data set
which provides the basis for efficient search facilities.

91

4. Semistructured Information Systems

In this chapter, we introduce the Snoopy concept, a paradigm for semistruc-
tured information systems which facilitates recommender systems in order to
create and maintain a homogeneous structure within the stored semistructured
information and thus, enabling efficient search facilities. The remainder of this
chapter is structured as follows. Section 1 contains a description of semistruc-
tured concepts and their characteristics. Section 2 subsequently introduces
the Snoopy concept which forms the basis for the presented semistructured
information system. Section 3 presents the recommender system and the ac-
cording algorithms required for an implementation of the Snoopy concept.
Subsequently, Section 4 contains the evaluation of the proposed approach.
Section 5 describes work closely related to the proposed approach and Section
6 contains a description of future work and concludes this chapter.

4.1. Semistructured Data

Semistructured data combines both the flexibility of not being forced to ad-
here to a rigid schema and the benefits of some structure present in regards
to querying facilities. Semistructured data was firstly discussed in the 90s
[16], where Peter Buneman explained the need for such semistructured data
by three factors: (i) the need for a flexible data structure for web data in order
to be able to query (mostly unstructured) web data, (ii) the need for a flexible
data exchange format between databases and (iii) the need for semistructured
data as a means for browsing through structured data. To some extent, these
requirements are still valid nowadays as there still is a need for a data format
which allows for a flexible structure of data enabling powerful query facilities
while at the same time not constraining the data to be stored in regards to its
structure, as e.g., in an information system like the system proposed in this
thesis. Also, in regards to data on the world wide web, facilities for precise
queries are somewhat limited. Web search still mostly relies on fulltext search
due to the lack of structure within the stored data. Throughout the last years,
different projects tried to tackle this problem by providing structured data sets
to the public. The Wikipedia platform introduced so-called infoboxes which
are tabular aggregations of the most important facts about the subject of the
according page. Figure 4.2 depicts a part of the infobox of the Wikipedia page
about Austria. As can be seen, such an infobox provides structure as informa-
tion chunks are provided as key-value pairs, e.g., the fact that Austria’s total
area is 83,855 km2 or that it’s capital is Vienna. Based on such structured in-
formation, complex queries can be evaluated and answered as structure allows
for a precise formulation of queries and likewise, the computation of results.

The Resource Description Framework (short: RDF) [64] currently is the most
dominant and popular representative of semistructured data. RDF aims at
storing information as triples where a triple features a subject, predicate and

92

4.1. Semistructured Data

Figure 4.2.: Infobox on the Wikipedia Article about Austria

an object. Each of these three components are described by a URI (Uniform
Resource Identifier3). URIs provides means to uniquely identifying arbitrary
resources and objects across the whole web. The above mentioned example
extracted from a Wikipedia infobox (area and capital of Austria) can be mod-
elled as RDF as can be seen in Listing 4.1. In this case, Austria is the subject
of the triple whereas “areakm” and “capital” are used as the predicates of
the two respective triples and for the area of Austria, the value is directly
specified. In contrast, the capital of Austria is specified as a URI as Vienna
is a resource itself and hence, due to the specification of Vienna as a resource,
a link is created which can be followed in order to retrieve more information
about Vienna. Such a usage of links to other resources leads to a graph of
information.

3http://www.w3.org/TR/uri-clarification/

93

4. Semistructured Information Systems

<http :// dbpedia . org / r e sou r c e / Austr ia> <http :// dbpedia .
org / property /areakm> <83,855>

<http :// dbpedia . org / r e sou r c e / Austr ia> <http :// dbpedia .
org / property / c a p i t a l> <http :// dbpedia . org / r e sou r c e /
Vienna>

Listing 4.1: RDF Representation of Facts about Austria

4.2. Snoopy Concept

In the following we present the Snoopy concept, a concept for semistructured
information systems which aims at creating and maintaining a homogeneous
set of properties and objects within the system. We propose to store informa-
tion about any arbitrary subject as property-value pairs. Consider the subject
of Austria as shown in Listing 4.2, where information about Austria is stored
as property-value pairs.

Austria
c a p i t a l : Vienna
inhab i t an t s : 8 ,414 ,638
area : 83 ,855 km2

Listing 4.2: Austria, Exemplary Subject

By letting the users store information as property-value pairs belonging to
a certain subject, information is implicitly stored as triples by the user, i.e.
the stored information can directly be converted to triples as can be seen in
Listing 4.3.

<Austria> <c a p i t a l> <Vienna>
<Austria> <i nhab i tant s> <8 ,414 ,638>
<Austria> <area> <83 ,855 km2>

Listing 4.3: Information about Austria in Triple Notation

It is important to note that the user is still able to choose arbitrary prop-
erties and according values to populate the information stored e.g., about
Austria. Such a system allows the user to freely enter information in the form
of property-value pairs associated with a given subject without having to ad-
here to a given schema. Nevertheless, the stored information features a certain
amount of structure due to the triple format. However, when considering that
many different users stemming from various backgrounds, languages, profes-
sions, etc. enter information into such a system, the set of entered properties

94

4.2. Snoopy Concept

and objects is bound to get heterogeneous4. Such a proliferation of struc-
tures is highly disadvantageous in terms of search capabilities as the system
features many synonymous properties and objects. The less synonymous and
ambiguous information is featured in the data set, the higher the precision and
recall of search facilities. Hence, the goal of the Snoopy concept is to avoid
a steady proliferation of schemata by providing its users with suitable recom-
mendations regarding both the structure and the content of the information
system. Furthermore, we propose to present the user with recommendations
for information which she might also want to add to the subject she entering
information about. In particular, the Snoopy concept aims at providing the
following support mechanisms to users:

• Content-aware structure recommendations

• Content recommendations and semantic refinements

• Auto-completion features

These mechanisms and the underlying algorithms are thoroughly discussed in
more detail in the following.

4.2.1. Content-Aware Structure Recommendations

The notion of structure recommendations refers to recommendations for ad-
ditional properties for the subject the user currently is adding information
to. Such recommendations are aimed at providing the user with suggestions
for further snippets of information which the user might also be interested in
adding to the current subject (along with a respective value), i.e. to point the
user to properties which were already used by other users on similarly struc-
tured subjects. Hence, the user is encouraged to enter more information as the
system “snoops” more information by suggesting further bits of information
which the user might want to add. The main benefit of such recommendations
is that in the case of a user who accepts (at least some of) these recommen-
dations, the set of properties is not unnecessarily enlarged as already existent
properties are recommended and hence, these are re-used, not contributing to
a proliferation of properties used within the system.

Consider a user who already entered information about the area, the capital
and the population of Austria, resulting in three triples as shown in Listing 4.3.
Based on these properties entered on the current subject (Austria), the goal is
to find further properties on similar subjects which are suitable for the subject

4Furnas et al. showed in [31] that if two humans are presented with the same object, the
chance of both humans choosing the same name for it is 20%.

95

4. Semistructured Information Systems

the user is currently working on. If e.g., a sufficiently large number of other
subjects which also feature the three properties “inhabitants”, “capital” and
“area” also contain the property “president” (and the according value), this
property is recommended to the user as it is very likely that this property
might also be suitable for the current subject. Hence, the user may easily
add this property and specify the according value. In particular, the system
is searched for the most similar subjects where the similarity of subjects is
solely defined by the intersection of the sets of properties on the two subjects.
Based on the set of the most similar subjects, the properties used on these
subjects are extracted and ranked in order to provide the user with the most
suitable and most popular properties. It is important to note that the set of
recommended properties is computed on-the-fly and hence gets refined and
updated whenever a new property is added to the current subject in order to
provide the user with the best suitable recommendations.

4.2.2. Content Recommendations and Semantic Refinements

The second set of recommendations proposed for the Snoopy concept are aimed
at creating and maintaining a homogeneous set of values within the informa-
tion system. This is realized by providing the user with exemplary values for
the specified property. If the user e.g. entered the property “country” on a
certain subject, the system provided the information that other users entered
values like “Austria” or “Italy”. Such recommendations are also used to point
users to units and metrics which are commonly used by other users, like for
specifying the area of a certain country, the users are provided with the infor-
mation that other users entered the according information as “100,000 km2”.
This way, the user may be prevented from entering semantically equivalent
information in a syntactically different way, e.g. as 100,000,000,000 m2.

Additionally, the recommendation of values can be exploited for a semantic
refinement of the information entered by the user. This is realized by suggest-
ing linking the entered values to already existing subjects in order to be able
to uniquely identify objects. This contributes to dissolving ambiguous entries,
as e.g., in the case of homonyms. If a user e.g. stated “Cambridge” as the
object associated with the property “city”, it is not clear whether the user
refers to Cambridge in the United Kingdom or Cambridge in Massachusetts
in the U.S.. However, if these two cities have already been entered in the
information system, this ambiguity can be resolved by linking the according
object to the correct subject. By doing so, the objects gets uniquely identified
and moreover, this link can be traversed in order to find more information
about this specific object.

96

4.3. Recommendation Mechanisms

4.2.3. Auto-Completion Features

In addition to two types of recommendations as described in the previous
sections, the user of the Snoopy concept is also provided with an intelligent
auto-completion feature which is aimed at minimizing the amount of entered
synonymous properties and values. Consider a user who is about to enter the
property “inhabitants”. After having started typing, the user is provided with
the set of the most popular properties within the system which feature the
already entered characters as a substring, e.g. “numberOfInhabitants”. This
way, the user can be provided with all properties which might be equivalent to
the property the user intended to enter. Typically, such recommendations are
accepted by users and hence, the set of properties used throughout the sys-
tem remains stable and homogeneous, as the addition of further synonymous
properties is avoided.

4.3. Recommendation Mechanisms

In the following section, the recommendation mechanisms for structure rec-
ommendations within the Snoopy concept is explained in detail. The imple-
mentation of content recommendations is not discussed in detail as the main
focus of this work lies on property recommendations.

The computation of content-aware structure recommendations is based on
finding similar subjects which feature properties which are not contained in
the current subject yet, i.e. to detect properties which co-occur frequently on
similar subjects and are new to the user in the context of the given subject.
In particular, we propose to perform a co-occurrence analysis based on the
findings in the field of association rule learning [4]. Association rules are
typically used for the analysis of transaction data of products, i.e. to detect all
items which are frequently bought together in order to optimize the according
marketing strategy. A transaction can be considered as a shopping basket of a
customer. More formally, a transaction consists of a set of items I1, I2, ..., In ∈
I. An association rule can then be defined as X ⇒ Y , where X is a subset of
items I (the antecedent of the rule) and Y is an item which is not contained
in X (the consequent of the rule). In the field of basket analysis, such a rule
implies that if a customer bought all items in X, he might also buy Y (with a
certain probability estimated by the computed confidence value of the rule).

As for the Snoopy concept, we propose to utilize the set of properties used on a
specific subject as the set of items featured in one transaction. Based on such
a transaction, the association rules are extracted. Consider an exemplary
subject featuring the properties “Inhabitants”, “Capital” and “Area”. The
extracted association rules can be seen in Table 4.1. In order to be able

97

4. Semistructured Information Systems

to compute recommendations efficiently for a huge number of subjects and
according properties, we propose to only make use of one-element antecedents
as this allows for an efficient implementation while at the same time still
allows for a fine-grained modeling of co-occurring properties. Furthermore,
co-occurrence of items on a single subject can be seen as a symmetric relation
of properties (if properties pa and pb are featured on the same subject, both
the rules pa ⇒ pb and pb ⇒ pa hold). Hence, we propose to only store one of
the two semantically equivalent rules and thus, view the proposed association
rules as pairs of properties co-occurring on a subject. We extend this notion of
pairs of co-occurring properties to a triple consisting of the two co-occurring
properties and an integer value c such that an association pair can be denoted
as (pa, pb, c) which describes that the properties pa and pb both occur on c
subjects within the data set.

Properties Association Rules Association Triples

Inhabitants Inhabitants ⇒ Capital (Inhabitants, Capital, 1)

Capital Inhabitants ⇒ Area (Capital, Area, 1)

Area Capital ⇒ Area (Inhabitants, Area, 1)

Capital ⇒ Inhabitants

Area ⇒ Inhabitants

Area ⇒ Capital

Area, Inhabitants ⇒ Capital

Area, Capital ⇒ Inhabitants

Inhabitants, Capital ⇒ Area

Table 4.1.: Association Rules Example

Algorithm

In the following, our algorithm for the computation of content-aware struc-
ture (property) recommendation candidates is presented and explained. The
actual algorithm can be seen in Algorithm 3. We make use of (i) the set of
association triples stored for all previously entered information in the system
denoted as R and (ii) the set of properties currently used on the current sub-
ject Si, denoted as PSi as input for the algorithm. For each of the properties
already associated with the current subject, the set of association triples is
searched for triples which (i) feature this specific property and (ii) contain
a second property which is new in the context of the given subject. If such
a triple is detected, the association triple is aligned and added to the set of
recommendation candidates. Such an alignment is required as it enables us

98

4.3. Recommendation Mechanisms

to identify the antecedent and the consequent of the rules, i.e. we are able to
detect which of the two properties is already featured on the current subject
and which of the properties is a candidate for later recommendation. The
aligned triple is then added to the set T of recommendation candidates.

Input: PSi , the set of properties associated with the current subject Si
Input: R, the set of association triples of the system
Result: set T of all structure recommendation candidates for Si

1 // Initialization

2 // Set of all association rules leading to new information

3 T ← { }
4 // Detect all rules featuring a consequent

5 // Not featured on the current subject

6 foreach pi ∈ PSi do
7 foreach (pa, pb, c) ∈ R do
8 if (pa == pi ∧ pb /∈ PSi) then
9 T ← T ∪ {(pa, pb, c)}

10 end
11 else if (pb == pi ∧ pa /∈ PSi) then
12 T ← T ∪ {(pb, pa, c)}
13 end

14 end

15 end
16 // Return set of recommendation candidates

17 return T

Algorithm 3: Recommendation Candidate Computation

Ranking

The ranking of the computed content-aware structure recommendation can-
didates is a crucial task as in an information system aiming at allowing users
to easily and efficiently enter and manipulate data, a user cannot be pre-
sented with a long list of recommended items. Therefore, suitable ranking
mechanisms are crucial in order to be able to present the user with the top-k
most suitable structure recommendations. We propose two different ranking
mechanisms for the computed structure recommendation candidates, which
we present in the following.

Generally, the ranking of content-aware structure recommendation is based on
the set T which is computed as shown in Algorithm 3. The set T consists of
association triples (pa, pb, c) where the co-occurring properties are all aligned

99

4. Semistructured Information Systems

such that pa is a property which is already used on the specific subject and pb
is not already used and hence a candidate for recommendation.

The first and straight-forward ranking mechanism is based on the count-value
c for given association triples. We refer to this ranking method as Global Pop-
ularity Rank. The algorithm underlying this ranking mechanism is sketched in
Algorithm 4. The algorithm clearly depicts that based on the set of recommen-
dation candidates T , the count values c for each association triple (pa, pb, c)
aggregated for each pb, i.e. the sum of all count values c of rules having pb
as consequent is computed. Subsequently, we rank the recommended proper-
ties in a descending order based on the aggregated count values. This ranking
mechanism allows us to rank those properties higher which frequently co-occur
with properties already used on the current subject.

Input: T , the set of recommendation candidates
Output: L, ranked list of structure recommendations for subject Si

1 L := []
2 C := { }
3 // For all of the rules in T compute rule counts

4 foreach (pa, pb, ci) ∈ T do
5 if (∃(px, c) ∈ C, where px == pb) then
6 C = C\{(px, c)}
7 C = C ∪ {(px, c+ ci)}
8 end
9 else

10 C = C ∪ {(pb, ci)}
11 end

12 end

13 // Sort candidates in C by c descending

14 L = sort (C, c)
15 return L

Algorithm 4: Global Popularity Rank

The second proposed ranking mechanism, the so-called Context-sensitive
Rank, is not directly related to the popularity of co-occurrences between prop-
erties. It is rather based on the number of different association triples which
imply the recommendation of a certain property pb, i.e. the number of rules
within T featuring property pb as consequent. The algorithm underlying this
ranking method can be seen in Listing 5. Hence, the more different rules fea-
ture a certain property as consequent, the higher the rank of the according
property. Thus, this ranking method aims at strengthening the influence of

100

4.4. Evaluation

the context of a given subject for the ranking. This ranking is more sensitive
to the context of the recommendation as it directly accounts for the proper-
ties used on the current subject. In contrast, the global popularity ranking
method relies on global popularity counts of association triples which might
not resemble the current context.

Input: T , the set of recommendation candidates
Output: L, ranked list of structure recommendations for subject Si

1 L := []
2 C := { }
3 // For all of these rules in T compute rule counts

4 foreach (pa, pb, ci) ∈ T do
5 if (∃(px, c) ∈ C, where px == pb) then
6 C = C\{(px, c)}
7 C = C ∪ {(px, c+ 1)}
8 end
9 else

10 C = C ∪ {(pb, 1)}
11 end

12 end

13 // Sort candidates in C by c descending

14 L = sort (C, c)
15 return L

Algorithm 5: Context-sensitive Rank

4.4. Evaluation

The following section describes the evaluation of the proposed recommendation
algorithm.

The structure recommendation approach can be seen as a recommendation of
good items [39]. As already carved out in Section 3.5, the recommendation
of good items is concerned with providing the user with recommendations the
user is most likely to accept. As for the Snoopy concept, the user is presented
with recommendations for further properties for the given subject. However,
the user cannot be presented with a huge number of properties to choose
from due to cognitive limitations and hence, the task is to recommend some
items. Due to this restriction, the recommendation task of the Snoopy concept
can rather be seen as a classification task which aims at classifying the most
suitable items for a specific user [51].

101

4. Semistructured Information Systems

We chose to perform the evaluation of the property recommendations offline
based on historic data. This is due to the fact that an automated offline eval-
uation can assess the accuracy of the recommendations in an efficient manner.
In particular, the evaluation is implemented by computing recommendations
for parts of subjects taken from the data set and subsequently comparing the
set of recommended items (properties) to the set of originally used properties
on the specific subject.

In the following we firstly present the metrics used for the evaluation and the
data set underlying our evaluation. Subsequently, we present the setup of the
evaluation, and the evaluation algorithm. Finally, we present the results of
the conducted evaluations.

4.4.1. Metrics

As for the metrics used within this evaluations, we utilize similar metrics
as already used for the evaluation of the hashtag recommendation approach
(described in Section 3.5). However, we adapted the recall measure such that
the denominator is defined by the minimum of the number of recommendations
and the number of original remaining properties, as shown in Equation 4.1.
In this equation, #matching properties holds the number of properties which
were correctly recommended. This is due to the fact that e.g., in the case
of computing 10 recommendations, computing the recall value for subjects
which only feature e.g. 7 properties may result in misleading figures. Even if
7 recommendations would be correct (and hence, all original properties would
be recommended), the recall would still be 0.7 due to the fact that the total
number of recommendations (and not the number of original properties) is
used for the evaluation.

recall =
#matching properties

min(#recommendations,#remaining properties)
(4.1)

4.4.2. Data Set

As for the data set underlying our evaluation procedures, we chose to make use
of a well-established data set, namely the DBPedia data set [8], which is pub-
licly available. This data set provides the content of infoboxes in Wikipedia
as triples. A deciding factor for choosing this data set for the evaluations is
the fact that the infoboxes from which the information was extracted were
created manually by users in a collaborative fashion. Theoretically, the in-
foboxes featured on Wikipedia articles are not restricted in regards to which
properties and values are featured in the infobox. However, these infoboxes

102

4.4. Evaluation

are manually maintained by the community and hence, manually aligned to
a common schema. Further information about the DBpedia data set can also
be found in Section 4.5.1.

In the following, the most important facts about the data set are described.
In total, 41,119,872 triples are featured in the data set used for the eval-
uation. The data set features 3,935,676 distinct subjects, 51,289 distinct
properties and 9,764,538 distinct object values. On average, each subject
features 10.45 property-value pairs. The property occurring most frequently
is http://dbpedia.org/property/wikiPageUsesTemplate5 occurring a to-
tal of 4,860,285 times within the data set. relatedInstance occurs 1,278,081
times and name occurs 1,251,559 times. On average, each property oc-
curs 801.73 times. There are two properties which are used only once:
captionImage and liveAlbums.

Characteristic Value

Subjects distinct 3,935,676

Properties distinct 51,289

Values distinct 9,764,538

Triples total 41,119,872

Max. number of property-value pairs on single subject 4,802

Min. number of property-value pairs on single subject 1

Avg. number of property-value pairs on single subject 10.45

Max. number of occurrences of a single property 4,860,285

Min. number of occurrences of a single property 1

Avg. number of occurrences of a single property 801.73

Max. number of occurrences of a single value 481,736

Min. number of occurrences of a single value 1

Avg. number of occurrences of a single value 4.21

Table 4.2.: Overview Data Set

4.4.3. Evaluation Setup

Before we were able to conduct the actual evaluations, a number of prepro-
cessing steps were taken. Firstly, we downloaded a DBpedia dump containing

5In the following, the prefix http://dbpedia.org/property/ is omitted.

103

4. Semistructured Information Systems

41,111,872 triples representing the content of 3,935,676 infoboxes, respectively
Wikipedia articles (subjects). We subsequently split this data set into two
parts: a test set and a training set. As for the test set, we chose to only make
use of subjects which feature at least six properties in order to be able to eval-
uate a sufficiently large number of properties on a single subject. A total of
1,500,000 infoboxes feature at least six properties and based on these subjects,
we randomly chose 10%, i.e. 150,000 infoboxes to be featured in the test data
set and hence, were evaluated. All the remaining 3,785,676 infoboxes were
added to the training set. Subsequently, the training set was processed and all
association pairs were extracted. This resulted in a raw total of 486,000,000
pairs and after having computed the popularity counts for the respective pairs,
resulted in 7,800,000 distinct pairs. This set of association pairs serves as the
basis for our evaluations.

4.4.4. Evaluation Algorithm

The evaluation was conducted as a Leave-One-Out test [21] (similar to the
evaluation which we conducted for the hashtag recommender system in Sec-
tion 3.5.3). In the case of property recommendations for semistructured infor-
mation systems, the following steps are taken:

1. Randomly select a subject from the test set.

2. Randomly remove all but three properties from the subject.

3. Use the remaining three properties as input for the recommender system
and compute the ranked property recommendations.

4. We propose to evaluate the approach by two different evaluation tech-
niques:

a) Top-k evaluation: We compare the set of top-k recommended proper-
ties to the previously removed properties and compute the evaluation
metrics.

b) Iterative evaluation: If one or more properties within the set of rec-
ommendations match an original property, randomly add one of these
properties to the set of remaining properties. As long as newly com-
puted properties match an original property, we take the (new) set
of properties and use these at input for a new computation of rec-
ommendations. This evaluation aims at evaluating to which amount
our approach is able to reconstruct the original infobox.

These steps can also be seen in Algorithm 6 which formally depicts the evalua-
tion algorithm for one randomly chosen subject. As opposed to the evaluation

104

4.4. Evaluation

Data: Set S of all subjects within the test data set
Data: Boolean topkEval determining whether top-k or iterative

evaluation is done

1 // initialization

2 Scurr := { } // subject to be evaluated

3 PScurr := { } // properties on the current subject

4 Pinput := { } // input properties for rec. computation

5 Prem := { } // remaining properties not reconstructed yet

6 R := { } // set of recommended properties

7 C := { } // set of correct recommendations

8 p := null // temporary property

9 // get random subject from S, extract properties

10 Scurr = getRandomSubject(S)
11 PScurr = extractProps(Scurr)

12 // randomly select three properties, compute recs

13 Pinput ← removeProperties(PScurr , 3)
14 Prem ← PScurr \ Pinput
15 R ← getRecommendations(Pinput)
16 if topkEval then
17 // top-k evaluation

18 computeMetrics(R,Prem)

19 else

20 // iterative evaluation

21 while ((R∩ Prem) 6= ∅) do
22 C ← R ∩ Prem
23 p← getRandomProperty(C)
24 Pinput ← Pinput ∪ {p}
25 Prem ← Prem \ p
26 computeMetrics(R,Prem)
27 // refine recommendations

28 R ←getRecommendations(Pinput)
29 end

30 end

Algorithm 6: Evaluation Algorithm

approach for hashtag recommendations, we did not remove all properties as
the remaining properties serve as the input for the recommender system (for
the hashtag recommendation task, the text with the original hashtags removed
served as input for the recommendation computation task). For this initial set
of three properties, the property recommendations are computed and stored

105

4. Semistructured Information Systems

in the set R. As for the top-k evaluation, this initial set of recommendations
is evaluated in regards to recall and precision. In contrast, the iterative eval-
uation (cf. lines 21–29 in Algorithm 6) is implemented by an iterative process
of getting recommendations, randomly choosing one of the correct recommen-
dations and adding this property to the set of properties featured on the test
subject. These properties are then re-used as the input for the next iteration
step.

4.4.5. Results

The following section contains the results of the conducted evaluations as
previously described.

Top-k Recommendation Evaluation

As for the traditional evaluation of precision and recall for top-k recommen-
dations, we chose to perform the evaluation for k being set to 5, 10, 15 and
20. This is due to the fact that showing more than 20 property recommenda-
tions does not resemble a realistic setup for recommendations provided in a
semistructured information system.

The evaluations showed that the context-sensitive ranking method performs
slightly better than the global popularity ranking in terms of recall values. As
can be seen in Figure 4.3(a), already for k = 5, a recall of more than 62%
can be reached when using the context-sensitive ranking, whereas the global
popularity ranking method achieves a recall value of 59%. For k being set
to 20 recommendations, the recall value can be increased to 66% and 60%,
respectively. The minor decrease in performance between k being set to 5
and to 10 properties can be explained by the choice of the evaluation metric
and the evaluation method itself. As listed in Table 4.2, each subject features
10.45 properties on average. Hence, when removing all but three properties (as
described in the evaluation algorithm, cf. Algorithm 6), the number of original
properties left to (correctly) recommend is 7. As pointed out in Section 4.4.1,
we adapted the recall measure such that it also incorporates the number of
remaining properties on the evaluated subject as well. Consider a subject
which features 7 remaining properties. When e.g. computing 5 property
recommendations where 3 properties are recommended correctly, the recall
value is 0.6. However, when computing 10 property recommendations where
4 properties are recommended correctly, the recall value is 0.57 (47). Hence,
despite increasing the amount of correctly recommended properties, the recall
value is lower.

106

4.4. Evaluation

●

●

●

●

5 10 15 20

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Top−k Evaluation

top−k Recommendations

R
ec

al
l

● Global.Popularity.Rank
Context.sensitive.Rank

(a) Recall

●

●

●

●

5 10 15 20

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Top−k Evaluation

top−k Recommendations

P
re

ci
si

on

● Global.Popularity.Rank
Context.sensitive.Rank

(b) Precision

Figure 4.3.: Evaluation for Top-k Recommendations

As for the precision of the structure recommendations, the results are shown
in Figure 4.3(b). For a k-value being set to 5, the precision achieved is 60%
when ranking the recommendation candidates based on the context-sensitive
rank and 57% for a ranking based on the popularity of the according asso-
ciation pairs. Naturally, precision decreases when increasing the number of
recommended items presented to the user. Still, at k = 20, precision values
are still above 30% for both of the proposed ranking methods.

Iterative Recommendation Evaluation

The iterative recommendation evaluation aims at evaluating how an iterative
refinement of recommendations affects the performance of the recommenda-
tion algorithm. As already carved out in Section 4.4.4, the refinement of
recommendations is simulated by iteratively accepting one random property
out of the set of correct (originally featured) and suitable properties and sub-
sequently recomputing (refining) the set of property recommendations as long
as further recommended properties are suitable.

The evaluations show that the recall performance of the context-sensitive rank
method is better than the recall performance of the global popularity ranking
method. As can be seen in Figure 4.4(a), a recall value of more than 47% is
achieved, increasing to a recall value of 55% when recommending the top-20
items when using the context-sensitive rank. The global popularity ranking
method achieves a recall value of 44% when recommending 5 items. However,
the recall value hardly increases when increasing the k-value. This can be

107

4. Semistructured Information Systems

lead back to the fact that this ranking method is based on global popularity
values of co-occurring properties. Hence, when refining the recommendations,
the order of recommended properties do not change vastly. In contrast, the
context-sensitive rank relies on the number of properties already contained on
the subject leading to the recommendation of properties. Hence, it is directly
related to the properties associated to the current subject and thus, adding
further properties in the course of refinements, entails more comprehensive
changes in regards of the ranking of refined recommendations.

●
● ●

●

5 10 15 20

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Iterative Evaluation

top−k Recommendations

R
ec

al
l

● Global.Popularity.Rank
Context.sensitive.Rank

(a) Recall

●

●

●

●

5 10 15 20

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Iterative Evaluation

top−k Recommendations

P
re

ci
si

on

● Global.Popularity.Rank
Context.sensitive.Rank

(b) Precision

Figure 4.4.: Evaluation for Iterative Recommendations

As for the precision of the iteratively computed recommendations, both of the
ranking methods perform equally for k being set to 5 and 10. Both methods
result in a precision value of 42% for 5 recommended items and 35% for 10
recommended items. However, as k increases to 20%, the global popularity
ranking performs better. This sudden change in performance can be lead
back to the fact that precision and recall are inversely related measures and
as the context-sensitive rank performs better in terms of recall for k being set
to 15 and 20, the precision for the same evaluation configuration naturally
decreases.

Reconstruction of Subjects

As already described, we also chose to evaluate how many of the subjects
within the test data set could be completely reconstructed. As for the ranking
method used for this evaluation, we chose to use the context-aware ranking
method as it performed better in regards to recall and precision. Furthermore,
we made use of the top-20 recommendations. The results of this evaluation can

108

4.5. Related Work

be seen in Figure 4.5. The data set contained a total of 150,000 subjects, each
of these featuring at least six properties. Out of these subjects, 16,565 subjects
were entirely reconstructed by accepting the recommended properties as stated
in the iterative evaluation description above. A total of 90,630 subjects were
reconstructed to more than 50%. This sum of subjects amounts to more than
60% of all subjects.

Reconstruction

Percentage of Reconstruction

N
um

be
r

of
 S

ub
je

ct
s

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

60
00

0
10

00
00

(a) Reconstruction Performance

[0,10) %
[10,20) %

[20,30) %

[30,40) %

[40,50) %

[50,60) %

[60,70) %
[70,80) %

[80,90) %

[90,100) %

Reconstruction Percentages

(b) Percentage of Reconstructed
Subjects

Figure 4.5.: Reconstruction Evaluation

4.5. Related Work

The proposed approach is related to various fields of research which incor-
porate collaborative information systems, Wikis and also the extraction of
structured information from various sources on the web.

4.5.1. Structured Data Extraction

The DBpedia project [8] has become a central resource in the Linked Open
Data movement. The Linked Open Data movement (LOD) aims at interlink-
ing RDF data sets containing structured information on the web such that
a huge interlinked repository of data stemming from various different origins
can be queried and used as a whole huge repository. The DBpedia data set
consists of structured data which was previously extracted from Wikipedia.
Such a structured data set provides facilities to query Wikipedia knowledge
in a precise manner as opposed to traditional fulltext search which previously
was the only way to search Wikipedia data. Due to the structure, precise and

109

4. Semistructured Information Systems

extensive queries can be handled efficiently and hence, all valuable information
contained in the Wikipedia encyclopedia can be searched for. Generally, the
DBpedia data set is extracted from Wikipedia by taking multiple sources of
information into account, as e.g. the Wikipedia category system, internal and
external links, infobox templates or geo-coordinate information.

The YAGO (Yet Another Great Ontology) project is also aimed at extract-
ing structured information (entities, concepts and relations) from Wikipedia
and providing it to the public. However, in contrast to DBpedia, also Word-
Net is incorporated for the extraction. Due to this combination Wikipedia
and WordNet knowledge, the YAGO ontology achieves both good coverage
and accuracy. In particular, all individuals are taken from Wikipedia as it
is a very capacious knowledge base. Based on conceptual categories within
Wikipedia (those which are not solely used for administrating Wikipedia con-
tent), the authors propose to extract information about the type of the ac-
cording resource, as e.g. the Wikipedia page about Austria is a member of the
categories “European countries” and “Member states of the United Nations”.
From this information, the authors deduce that Austria is part of Europe and
a member of the United Nations, respectively. The Wikipedia category system
features hierarchy, however this information is mostly used for administrating
Wikipedia content and does hardly resemble real-world hierarchies. Therefore,
the authors propose to use WordNet and the contained synsets6 in order to
derive subclass-of relationships between concepts featured in YAGO. Synset
within WordNet are furthermore used to define semantic equivalence relation-
ships between concepts. Further relations are also deduced from Wikipedia
categories, e.g., the fact that Einstein was born in 1879 (“bornInYear”: 1879)
can be deduced from the category “1879 births”. However, all of these ex-
tracted facts rely on a rigid rule set and hence, the set of properties which
is extracted is rigid and features about 100 relations which were previously
defined manually. YAGO2 [44] is an extension to the YAGO knowledge base
as it introduces timely and spatial dimensions to the data set. Geolocation
information is extracted from Wikipedia and the GeoNames database, timely
information is extracted from Wikipedia. The newly enriched data set features
80 million facts about roughly 10 million entities. For both the YAGO and
YAGO2 approach the authors state that the quality of the extracted informa-
tion is nearly human (accuracy is about 95%).

One further approach aiming at automatically extracting structured data is
the “Intelligence in Wikipedia” project [112]. It is also based on Wikipedia

6WordNet is a lexical database for the English language where words are assigned to one
or multiple so-called synsets where one synset features all words having the same meaning.
Based on this information, relations between synsets are also provided as e.g. hypernyms or
hyponyms for synsets.

110

4.5. Related Work

and proposes to combine both Information Extraction techniques and mixed
initiative techniques aiming at firstly constructing and completing Wikipedia
infoboxes and secondly, providing a rich and clean ontology based on the
extracted facts. The core of this approach is a self-supervised learning system
[114] which uses the existing content of infoboxes as training data. Such a
training set if created by taking facts from infoboxes and trying to match
such a fact with a sentence within the fulltext of the corresponding Wikipedia
article. These labeled sentence form the positive training examples whereas all
unlabeled sentences form the negative training examples. For the extraction
of facts, the authors make use of two classifiers which are trained by the data
set previously extracted. The first classifier is a document classifier which is
responsible for identifying articles belonging to the class of articles for which
information is to be extracted. The second classifier used for this approach
is a sentence classifier. This classifier is used to find sentence which might
contain the desired attributes and information in order to be able to construct
and complement an infobox. Based on the results of the two classifiers, the
extractors are learned by Condition Random Fields. In order to ensure high
quality of the automatically extracted facts, the authors propose to make use
of a mixed-initiative approach [45]. Hence, the authors propose to ask users of
Wikipedia to confirm the correctness of the facts previously extracted. This is
done by showing the extracted fact to the user (either by a popup, an icon or
highlighted text) asking the user to examine the fact. However, this approach
aims at extracting information from already stored texts whereas in contrast
our approach aims at supporting the user when inserting new information (as
key-value pairs).

A rather recent development in the field of extraction and collaborative cura-
tion of structured data is the creation of the Wikidata project7. This project is
initiated by the Wikimedia foundation (founder of Wikipedia) aimed at creat-
ing a common structured knowledge base which is available to the public and
is—in contrast to the previously presented knowledge bases—also editable
by the public. This knowledge base is aimed at being the central basis for
Wikipedia articles, especially for infoboxes, regardless of the language of the
article in which the respective infobox is embedded in. Such a central point of
information resolves many ambiguities and inconsistencies among various in-
foboxes stemming from different languages. However, at the time of writing8,
this system does not provide support to its users in terms of guiding the user
to homogenize the entered data.

7http://meta.wikimedia.org/wiki/Wikidata/en

8as of October 2012

111

4. Semistructured Information Systems

ExDB (Extraction Database) is a further system aiming at providing struc-
tured querying facilities based on (unstructured) web data. This system also
extracts facts from web sources in order to create a structure knowledge base
which can then be queried in a precise manner. The extraction of facts is based
on a probabilistic approach in order to be able to cope with uncertainties aris-
ing when automatically extracting facts from the web. Therefore, the system
also offers a query language which enables users to formulate probabilistic
queries.

4.5.2. Collaborative Information Systems

Freebase [10] is a semistructured information system which currently holds
information about more than 23 million different entities9. The information
contained in the system is harvested from multiple other, publicly available
data sets like Wikipedia, MusicBrainz, etc. Additionally, Freebase users may
also edit the data contained. In regards to the structure of the data featured
in Freebase, each topic (e.g., a page about a certain person) consists of mul-
tiple types where each type defines a is-a relationships. A page about Albert
Einstein contains the types “Person”, “Award Winner” or “Academic”. Such
types may be edited by users, who may also edit and add properties (and ac-
cording values) belonging to such a type. However, users are not able to edit
types which were created by other users. Freebase provides so-called Com-
mons which is a set of topics for which administrators ensured that the topics
covered fulfill a certain standard. The types used on the topics within Free-
base can be seen as predefined schemata. Due to these schemata, FreeBase
does not offer recommendations for further properties as the types are rigidly
defined which strongly distinguishes the Freebase approach from the Snoopy
concept.

The Cimple/DBLife project [26] is a community information management sys-
tem which aims at providing a structured information system to a certain
community. In order to fill the system with content, information is extracted
from the web. The authors propose to create and maintain such a system by
firstly making use of a domain expert’s knowledge in order to create a seed set
of crawlable websites, desired entities and relationships. Based on this seed
set, information is extracted from the web and stored in the information sys-
tem. As automated extraction traditionally yields errors, the system provides
mechanisms enabling users to correct errors, to refine data and to evolve the
contained information. However—in contrast to the Snoopy concept—data is
aligned after the insertion into the information system.

9http://www.freebase.com/

112

4.6. Conclusions and Future Work

Semantic MediaWiki [111] proposes an extension to the traditional Wiki soft-
ware MediaWiki, which is also used in Wikipedia. This extension of the Wiki
markup syntax is used to semantically enhance the content provided in the
Wiki. These enhancements include three different types of annotations which
can be added to the Wiki markup: (i) the assignment of Wiki articles to cer-
tain categories by simply annotating the page with the corresponding category,
(ii) the annotation of links between Wiki pages in order to be able to specify
the type of the relation and (iii) the annotation of certain facts (attributes)
with key-value pairs.

The most distinguishing feature between the presented information systems
and the Snoopy concept is that no other system makes use of recommendations
already during the time of insertion in order to encourage the user to add al-
ready aligned information into the system. To the best of our knowledge, there
is no other concept for a semistructured information system which tackles the
problem of schema proliferation by supporting the user with recommendation
techniques.

4.6. Conclusions and Future Work

In this chapter, we presented a recommender system which enables semistruc-
tured, collaborative information systems to create and maintain a homoge-
neous schema and structure within the stored data. The evaluations conducted
showed that the proposed recommendation algorithm is able to reach recall
values of 62% when providing a list of five property recommendations. Also,
the precision of recommendations reached values of 60% when computing five
property recommendations.

In regards to integration of the data produced by an information system based
on the Snoopy concept into the Linked Open Data cloud, future work includes
an automatic conversion from the internal triples format to standardized RDF.
Such a standardization allows for other data sets to interlink with the data
provided by the specific information system. This can be realized by match-
ing the entered information to LOD data sources. However, performing this
matching after the insertion into the information system can be erroneous
and tedious. Hence, a direct integration of LOD sources and the according
information into the recommendation computation mechanisms would avoid
such problems, especially for uniquely resolving synonymous entities. Still,
the integration of such a huge amount of data into the process of computing
recommendations is a severe challenge in regards to computability.

Furthermore, the integration of LOD sources can also contribute to a pri-
mary boostrapping of the information system. In the course of users entering

113

4. Semistructured Information Systems

information in an information system based on the Snoopy concept, recom-
mendations for properties gain higher quality with every new subject that is
entered. However, if a new subject describing a new topic or type of entity is
entered, there are no similar subjects present within the system as such a new
topic may require new properties to be used to describe it. Hence, the rec-
ommended properties might not be entirely suitable until a sufficient amount
of similar subjects have been entered to the system. Thus, bootstrapping the
system with initial data based on LOD sources can contribute to lowering this
barrier.

114

CHAPTER 5

Conclusion

During the last decade, the web has experienced a shift of paradigms as it
evolved from a web of information consumers to a web of information pro-
sumers who equally produce and consume online information. The information
stemming from such a user behaviour ranges from collaboratively created en-
cyclopedia or collaboratively created and annotated maps to huge repositories
of information created by the users of social online media like microblogging
platforms. However, this data cannot be fully exploited due to the lack of
structure which is a key-enabler for search facilities providing users appropri-
ate instruments to find the desired information as we elaborated on in Section
1.1. Therefore, suitable mechanisms for the creation of a common and homo-
geneous structure have to be found in order to unlock the full potential of this
data.

In this thesis we analysed how recommender systems can be exploited for the
introduction and maintenance of structure within such collaboratively created
information enabling powerful search facilities for these huge amounts of data.
Thus, we formulated the following research questions which we identified in
Section 1.1:

5. Conclusion

RQ1: Can hashtag recommendations be leveraged to enhance structure in
microblog entries?

RQ2: Can structure within semistructured data be created and maintained
efficiently by content-aware recommendation mechanisms?

In the course of this thesis, the following contributions aiming at answering
the two research questions have been made:

Microblogging Environments

As for microblogging environments, we firstly presented a data set crawled
from the Twitter microblogging platform and provided a detailed analysis
of this data set, especially in regards to the hashtagging behaviour of users
and the resulting heterogeneous set of hashtags. Based on these findings, we
presented a concept for the recommendation of hashtags in microblogging en-
vironments in Section 3.4. The concept is aimed at providing the user with
hashtags suitable for the microblog entry the user is currently entering. The
proposed recommender system relies on a sufficiently large set of microblog en-
tries which are exploited for the recommendation of hashtags to the user. The
basic recommendations are derived from the entries within the data set that
are most similar to the entered message. We presented five different similarity
measures for microblog entries. The conducted evaluations showed that rec-
ommendations based on cosine similarity measures performed best. In order
to also be able to incorporate timely factors and user preferences into the rec-
ommendations, we also proposed different ranking strategies for the computed
hashtag recommendation candidates. The proposed concept was implemented
as a prototype which served as a basis for the conducted evaluations. These
evaluations showed that an approach which heavily incorporates the similar-
ity of the respective entries for the computation of recommendations leads to
suitable and useful recommendations of hashtags and can hence contribute the
creation and maintenance of a homogeneous data set.

Semistructured Information Systems

In the field of semistructured information systems, we presented the Snoopy
concept which is a semistructured information system which provides guidance
in the form recommendations to its users. Users are able to enter informa-
tion about any arbitrary subject in the form of property-value pairs where
the name of the subject, the property and the value can be chosen freely by
the user. However, as we identified in Section 4.1, such freedom comes at
the risk of creating a heterogeneous set of data which imposes limitations on
the search capabilities on this data due to a proliferation of the implicitly
contained schemata. We proposed three different types of guidance mech-

116

anisms which all are aimed at creating a homogeneous data set providing
high search efficiency to its users. We proposed to make use of content-aware
structure recommendations, which are the main building block of the Snoopy
concept. These recommendations aim at providing the user with suggestions
for further properties for which the user might want to add the according
value. These recommendations are computed based on an analysis of simi-
larly structured subjects. In Section 4.3 we present the algorithms underlying
the content-aware structure recommender system. Furthermore, we presented
content-recommendations and semantic refinements, the former providing rec-
ommendations for values of already specified properties and the latter aiming
at creating links between different triples in order to resolve ambiguous values.
Furthermore, we proposed an intelligent auto-completion feature which also
aims at prevent the user from entering synonymous properties. The evalu-
ation of these algorithms showed that such recommendations are capable of
providing users with useful and adequate recommendations for properties and
values. Hence, by accepting these recommendations, the users can contribute
to a data set featuring a homogeneous schema which can subsequently be
exploited for efficient search facilities.

In conclusion, this dissertation showed that recommendations can be facili-
tated for the collaborative creation and maintenance of a common and homo-
geneous structure. We showcased this finding for semistructured information
systems and microblogging platforms.

117

APPENDIX A

Appendix

A.1. Twitter API Object
1 {
2 ” i d ” : NumberLong(” 78201820832481280 ”) ,
3 ” c o n t r i b u t o r s ” : null ,
4 ” coo rd ina t e s ” : null ,
5 ” c r e a t e d a t ” : ”Tue Jun 07 20 : 49 : 01 +0000 2011” ,
6 ” e n t i t i e s ” :
7 {
8 ” hashtags ” : [
9 {

10 ” text ” : ” a d v e r t i s i n g ” ,
11 ” i n d i c e s ” : [107 , 119]
12 } ,
13 {
14 ” text ” : ”PR” ,
15 ” i n d i c e s ” : [120 , 123]
16 } ,
17 {
18 ” text ” : ” marketing ” ,

A. Appendix

19 ” i n d i c e s ” : [124 , 134]
20 }] ,
21 ” user ment ions ” : [] ,
22 ” u r l s ” : []
23 } ,
24 ” f a v o r i t e d ” : false ,
25 ” geo ” : null ,
26 ” i d s t r ” : ” 78201820832481280 ” ,
27 ” i n r e p l y t o s c r e e n n a m e ” : null ,
28 ” i n r e p l y t o s t a t u s i d ” : null ,
29 ” i n r e p l y t o s t a t u s i d s t r ” : null ,
30 ” i n r e p l y t o u s e r i d ” : null ,
31 ” i n r e p l y t o u s e r i d s t r ” : null ,
32 ” p lace ” : null ,
33 ” re tweet count ” : 0 ,
34 ” retweeted ” : false ,
35 ” source ” : ”web” ,
36 ” text ” : ”Working on an assignment : What do you see as

the b i g g e s t i s s u e f a c i n g i n t e g r a t e d marketing
communications ? #a d v e r t i s i n g #PR #marketing ” ,

37 ” truncated ” : false ,
38 ” user ” : {
39 ” screen name ” : ” nancycdoyle ” ,
40 ” i d s t r ” : ” 22835721 ” ,
41 ” i s t r a n s l a t o r ” : false ,
42 ” p r o f i l e t e x t c o l o r ” : ”573 d f f ” ,
43 ” f o l l o w e r s c o u n t ” : 535 ,
44 ” u r l ” : ” http :// p i n t e r e s t . com/ nancycdoyle /” ,
45 ” l i s t e d c o u n t ” : 24 ,
46 ” v e r i f i e d ” : false ,
47 ” n o t i f i c a t i o n s ” : null ,
48 ” p r o f i l e s i d e b a r f i l l c o l o r ” : ” f f e b 8 7 ” ,
49 ” p r o f i l e b a c k g r o u n d t i l e ” : true ,
50 ” d e s c r i p t i o n ” : ” Just a g i r l in l ove with f a s h i o n . . .

Apprec iat ion f o r g l o s s y magazines , wr i t ing , des ign ,
reading , orch ids , t r ave l , and PR.\ r \n\ r \n\ r \n\ r \n\

r \n” ,
51 ” s h o w a l l i n l i n e m e d i a ” : false ,
52 ” geo enabled ” : false ,
53 ” f a v o u r i t e s c o u n t ” : 5 ,
54 ” f r i e n d s c o u n t ” : 953 ,
55 ” l o c a t i o n ” : ” Hal i fax , Nova Scot ia , Canada” ,
56 ” lang ” : ”en” ,
57 ” p r o f i l e l i n k c o l o r ” : ”2 a74bf ” ,

120

A.1. Twitter API Object

58 ” d e f a u l t p r o f i l e i m a g e ” : false ,
59 ” p r o f i l e s i d e b a r b o r d e r c o l o r ” : ” e f f a 5 0 ” ,
60 ” c o n t r i b u t o r s e n a b l e d ” : false ,
61 ” s t a t u s e s c o u n t ” : 4417 ,
62 ” t ime zone ” : ” Sant iago ” ,
63 ” c r e a t e d a t ” : ”Wed Mar 04 21 : 16 : 48 +0000 2009” ,
64 ” protec ted ” : false ,
65 ” f o l l o w i n g ” : null ,
66 ” pro f i l e u s e backg round image ” : true ,
67 ”name” : ”Nancy C. Doyle” ,
68 ” f o l l o w r e q u e s t s e n t ” : null ,
69 ” p r o f i l e b a c k g r o u n d c o l o r ” : ” c47b79” ,
70 ” p r o f i l e i m a g e u r l ” : ” http :// a0 . twimg . com/

p r o f i l e i m a g e s /1278464140/ Photo 107 normal . jpg ” ,
71 ” id ” : 22835721 ,
72 ” d e f a u l t p r o f i l e ” : false ,
73 ” p r o f i l e b a c k g r o u n d i m a g e u r l ” : ” http :// a3 . twimg . com/

pro f i l e backg round image s /222247664/ P i c tu r e 5 . png” ,
74 ” u t c o f f s e t ” : −14400 }
75 }

Listing A.1: JSON Object containing information about a Tweet, retrieved
via the Twitter API

121

A. Appendix

A.2. Detailed Evaluation Results
A.2.1. Recall Evaluation

●

●

●

●

● ●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Similarity Measure (scoreRank)

top−k Recommendations

R
ec

al
l

●

●
●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(a) scoreRank

●

●

●

●

● ●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Recall per Similarity Measure (recCountRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(b) recCountRank

●

●

●

●

●

●

5 10 15 20

0.
05

0.
10

0.
15

0.
20

Recall per Similarity Measure (globalPopularityRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(c) globalPopularityRank

●
●

●

●

●
●

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

Recall per Similarity Measure (dateRecentUsageRank)

top−k Recommendations

R
ec

al
l

●

●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(d) dateRecentUsageRank

●
● ●

●

●
●

5 10 15 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Recall per Similarity Measure (dateAvgUsageRank)

top−k Recommendations

R
ec

al
l

●
●

●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(e) dateAvgUsageRank

Figure A.1.: Recall Values for Top-k Recommendations

122

A.2. Detailed Evaluation Results

A.2.2. Precision Evaluation

●

●
●

● ● ●

5 10 15 20

0.
00

0.
05

0.
10

0.
15

Precision per Similarity Measure (scoreRank)

top−k Recommendations

P
re

ci
si

on

●

●

●

●
● ●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(a) scoreRank

●

●
●

●

●
●

5 10 15 20

0.
02

0.
04

0.
06

0.
08

Precision per Similarity Measure (recCountRank)

top−k Recommendations

P
re

ci
si

on

●

●

●

●
●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(b) recCountRank

● ●

●

●
●

●

5 10 15 20

0.
01

0.
02

0.
03

0.
04

0.
05

Precision per Similarity Measure (globalPopularityRank)

top−k Recommendations

P
re

ci
si

on

●

●

●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(c) globalPopularityRank

●

● ●
● ● ●

5 10 15 20

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
Precision per Similarity Measure (dateRecentUsageRank)

top−k Recommendations

P
re

ci
si

on

●
● ● ● ● ●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(d) dateRecentUsageRank

●

●
● ● ● ●

5 10 15 20

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Precision per Similarity Measure (dateAvgUsageRank)

top−k Recommendations

P
re

ci
si

on

●

●

●
● ● ●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(e) dateAvgUsageRank

Figure A.2.: Precision Values for Top-k Recommendations

123

A. Appendix

A.2.3. F1 Evaluation

●
●

●
●

●
●

5 10 15 20

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

F1−Measure per Similarity Measure (scoreRank)

top−k Recommendations

F
1−

M
ea

su
re

●
●

●

●
●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(a) scoreRank

● ● ●

●

●

●

5 10 15 20

0.
02

0.
04

0.
06

0.
08

0.
10

F1−Measure per Similarity Measure (recCountRank)

top−k Recommendations

F
1−

M
ea

su
re

●

● ●

●

●

●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(b) recCountRank

●

●
●

●
●

●

5 10 15 20

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07F1−Measure per Similarity Measure (globalPopularityRank)

top−k Recommendations

F
1−

M
ea

su
re

●

● ●

●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(c) globalPopularityRank

● ●
● ● ● ●

5 10 15 20

0.
00

5
0.

01
5

0.
02

5
0.

03
5

F1−Measure per Similarity Measure (dateRecentUsageRank)

top−k Recommendations

F
1−

M
ea

su
re

●

● ●
●

●
●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(d) dateRecentUsageRank

● ●
●

● ● ●

5 10 15 20

0.
00

5
0.

01
5

0.
02

5
0.

03
5F1−Measure per Similarity Measure (dateAvgUsageRank)

top−k Recommendations

F
1−

M
ea

su
re

● ●

●
●

● ●

●

●

JaccardSimilarity

CosineSimilarity.bm25

CosineSimilarity.tfidf

LevenshteinDistance

(e) dateAvgUsageRank

Figure A.3.: F1 Values for Top-k Recommendations

124

A.2. Detailed Evaluation Results

A.2.4. Refinement Precision Evaluation

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04 Precision per Similarity Measure (CosineSimilarity)

Refinement of Recommendations

P
re

ci
si

on

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(a) Cosine Similarity (tfidf)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04 Precision per Similarity Measure (CosineSimilarity)

Refinement of Recommendations

P
re

ci
si

on

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(b) Cosine Similarity (BM25)

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Precision per Similarity Measure (LevenshteinDistance)

Refinement of Recommendations

P
re

ci
si

on

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(c) Levenshtein Distance

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Precision per Similarity Measure (JaccardSimilarity)

Refinement of Recommendations

P
re

ci
si

on

●

●

● ●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(d) Jaccard Coefficient

Figure A.4.: Refinement Precision Values for Top-k Recommendations

125

A. Appendix

A.2.5. Refinement F1 Evaluation

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

F1−Measure per Similarity Measure (CosineSimilarity)

Refinement of Recommendations

F
1−

M
ea

su
re

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(a) Cosine Similarity (tfidf)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

F1−Measure per Similarity Measure (CosineSimilarity)

Refinement of Recommendations

F
1−

M
ea

su
re

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(b) Cosine Similarity (BM25)

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

F1−Measure per Similarity Measure (LevenshteinDistance)

Refinement of Recommendations

F
1−

M
ea

su
re

●

●

●

●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(c) Levenshtein Distance

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

F1−Measure per Similarity Measure (JaccardSimilarity)

Refinement of Recommendations

F
1−

M
ea

su
re

●

●

● ●

●

● ●globalPopularityRank

dateAvgUsageRank

dateRecentUsageRank

recCountRank

scoreRank

(d) Jaccard Coefficient

Figure A.5.: Refinement F1 Values for Top-k Recommendations

126

A.2. Detailed Evaluation Results

A.2.6. Hybrid Ranking Evaluation

●

●
● ● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
02

5
0.

03
0

0.
03

5
0.

04
0

Precision per RankingMethod (CosineSimilarity)

Weighting Factor

P
re

ci
si

on

●

● ● ● ● ●●

● ●

●

●

●

●

●

●

recCount.globalPopularity

recCount.avgUsage

recCount.recentUsage

scoreRank.globalPopularity

scoreRank.avgUsage

scoreRank.recentUsage

scoreRank.recCount

Figure A.6.: Precision for Hybrid Ranking Strategies (Similarity Measure: Co-
sine Similarity w/ BM25 Weighting, Top-20 Recommendations)

127

A. Appendix

●

● ● ● ●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
04

0.
05

0.
06

0.
07

F1−Measure per RankingMethod (CosineSimilarity)

Weighting Factor

F
1−

M
ea

su
re

●

● ● ● ● ●●

● ●

●

●

●

●

●

●

recCount.globalPopularity

recCount.avgUsage

recCount.recentUsage

scoreRank.globalPopularity

scoreRank.avgUsage

scoreRank.recentUsage

scoreRank.recCount

Figure A.7.: F1 for Hybrid Ranking Strategies (Similarity Measure: Cosine
Similarity w/ BM25 Weighting, Top-20 Recommendations)

128

List of Figures

2.1. User-item Matrix for Explicit User Feedback 12
2.2. User-item Matrix for Implicit User Feedback 12

3.1. A User’s Timeline . 24
3.2. Hashtag Popularity Distribution 31
3.3. Distribution of Hashtags per Tweet 34
3.4. Distribution of Hashtags per Tweet 35
3.5. Distribution of Hashtag Position within Tweet 36
3.6. Distribution of Top-12 Languages 37
3.7. Basic Computation of Recommendations—Workflow 42
3.8. Recall for Top-k Recommendations for Different Similarity Mea-

sures (Ranking Strategy: scoreRank) 62
3.9. Precision for Top-k Recommendations for Different Similarity

Measures (Ranking Strategy: scoreRank) 63
3.10. F1-Measure for Top-k Recommendations for Different Similar-

ity Measures (Ranking Strategy: scoreRank) 64
3.11. Recall Values for Top-k Recommendations 67

(a). scoreRank . 67
(b). recCountRank . 67
(c). globalPopularityRank . 67
(d). dateRecentUsageRank . 67
(e). dateAvgUsageRank . 67

3.12. Recommendation Refinement 68
(a). scoreRank . 68

List of Figures

(b). recCountRank . 68
(c). globalPopularityRank . 68
(d). dateRecentUsageRank 68
(e). dateAvgUsageRank . 68

3.13. Recall for Hybrid Ranking Strategies (Similarity Measure: Co-
sine Similarity w/ BM25 weighting, Top-20 Recommendations) 69

3.14. Prototype Component Diagram 70
3.15. Prototype Workflow . 72
3.16. Scalable Architecture . 73
3.17. Workflow for Live-Recommendations 75

4.1. Fulltext of an Article (Austria) on Wikipedia 91
4.2. Infobox on the Wikipedia Article about Austria 93
4.3. Evaluation for Top-k Recommendations 107

(a). Recall . 107
(b). Precision . 107

4.4. Evaluation for Iterative Recommendations 108
(a). Recall . 108
(b). Precision . 108

4.5. Reconstruction Evaluation . 109
(a). Reconstruction Performance 109
(b). Percentage of Reconstructed Subjects 109

A.1. Recall Values for Top-k Recommendations 122
(a). scoreRank . 122
(b). recCountRank . 122
(c). globalPopularityRank . 122
(d). dateRecentUsageRank . 122
(e). dateAvgUsageRank . 122

A.2. Precision Values for Top-k Recommendations 123
(a). scoreRank . 123
(b). recCountRank . 123
(c). globalPopularityRank . 123
(d). dateRecentUsageRank . 123
(e). dateAvgUsageRank . 123

A.3. F1 Values for Top-k Recommendations 124
(a). scoreRank . 124
(b). recCountRank . 124
(c). globalPopularityRank . 124
(d). dateRecentUsageRank . 124
(e). dateAvgUsageRank . 124

A.4. Refinement Precision Values for Top-k Recommendations . . . 125
(a). Cosine Similarity (tfidf) 125
(b). Cosine Similarity (BM25) 125

130

List of Figures

(c). Levenshtein Distance . 125
(d). Jaccard Coefficient . 125

A.5. Refinement F1 Values for Top-k Recommendations 126
(a). Cosine Similarity (tfidf) 126
(b). Cosine Similarity (BM25) 126
(c). Levenshtein Distance . 126
(d). Jaccard Coefficient . 126

A.6. Precision for Hybrid Ranking Strategies (Similarity Measure:
Cosine Similarity w/ BM25 Weighting, Top-20 Recommenda-
tions) . 127

A.7. F1 for Hybrid Ranking Strategies (Similarity Measure: Cosine
Similarity w/ BM25 Weighting, Top-20 Recommendations) . . 128

131

Bibliography

[1] F. Abel, I. Celik, G.-J. Houben, and P. Siehndel. Leveraging the Seman-
tics of Tweets for Adaptive Faceted Search on Twitter. In The Semantic
Web – ISWC 2011, volume 7031 of Lecture Notes in Computer Science,
pages 1–17. Springer, Berlin, Heidelberg, New York, 2011.

[2] F. Abel, Q. Gao, G. Houben, and K. Tao. Analyzing User Modeling
on Twitter for Personalized News Recommendations. In Proceedings
of the 19th International Conference on User Modeling, Adaption, and
Personalization, UMAP’11, pages 1–12, Berlin, Heidelberg, New York,
2011. Springer.

[3] G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Rec-
ommender Systems: A Survey of the State-of-the-Art and Possible
Extensions. IEEE Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[4] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association
Rules in Large Databases. In VLDB’94, Proceedings of 20th Interna-
tional Conference on Very Large Data Bases, pages 487–499, Burlington,
MA, USA, 1994. Morgan Kaufmann.

[5] M. Ames and M. Naaman. Why we Tag: Motivations for Annotation
in Mobile and Online Media. In CHI’07: Proceedings of the SIGCHI

Bibliography

Conference on Human Factors in Computing Systems, pages 971–980,
New York, NY, USA, 2007. ACM.

[6] M. Armentano, D. Godoy, and A. Amandi. Recommending Information
Sources to Information Seekers in Twitter. In International Workshop on
Social Web Mining, Co-located with IJCAI 2011, pages 41–49. Available
online at http://users.cecs.anu.edu.au/~sguo/swm.html, accessed
2012-10-24.

[7] S. Asur, B. A. Huberman, G. Szabó, and C. Wang. Trends in Social
Media: Persistence and Decay. In Proceedings of the Fifth International
Conference on Weblogs and Social Media, Palo Alto, CA, USA, 2011.
Association for the Advancement of Artificial Intelligence (AAAI).

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.
Dbpedia: A Nucleus for a Web of Open Data. In 6th Int’l Semantic Web
Conference, pages 11–15, Berlin, Heidelberg, New York, 2007. Springer.

[9] M. Balabanović and Y. Shoham. Fab: Content-based, Collaborative
Recommendation. Communications of the ACM, 40(3):66–72, 1997.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
Collaboratively Created Graph Database for Structuring Human Knowl-
edge. In Proceedings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, pages 1247–1250, New York, NY, USA,
2008. ACM.

[11] D. Bollen, B. Knijnenburg, M. Willemsen, and M. Graus. Understanding
Choice Overload in Recommender Systems. In Proceedings of the fourth
ACM Conference on Recommender Systems, pages 63–70, New York,
NY, USA, 2010. ACM.

[12] J. Bollen, H. Mao, and X. Zeng. Twitter Mood Predicts the Stock
Market. Journal of Computational Science, 2(1):1–8, 2011.

[13] D. Boyd, S. Golder, and G. Lotan. Tweet, Tweet, Retweet: Con-
versational Aspects of Retweeting on Twitter. In Proceedings of the
43rd Hawaii International International Conference on Systems Science
(HICSS-43 2010), pages 1–10, Piscataway, NJ, USA, 2010. IEEE Com-
puter Society.

[14] J. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predic-
tive Algorithms for Collaborative Filtering. In Proceedings of the four-

134

Bibliography

teenth Conference on Uncertainty in Artificial Intelligence, pages 43–52,
Burlington, MA, USA, 1998. Morgan Kaufmann Publishers Inc.

[15] A. Bruns and J. E. Burgess. The Use of Twitter Hashtags in the Forma-
tion of Ad Hoc Publics. In Proceedings of the 6th European Consortium
for Political Research General Conference, pages 1–9, University of Ice-
land, Reykjavik, 2011.

[16] P. Buneman. Semistructured Data. In Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pages 117–121, New York, NY, USA, 1997. ACM.

[17] R. Burke. Hybrid Recommender Systems: Survey and Experiments.
User Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[18] S. Carter, E. Tsagkias, and W. Weerkamp. Twitter Hashtags: Joint
Translation and Clustering. In 3rd International Conference on Web
Science (WebSci 2011), pages 1–3, New York, NY, USA, 2011. ACM.

[19] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short
and Tweet: Experiments on Recommending Content from Information
Streams. In Proceedings of the 28th International Conference on Human
Factors in Computing Systems, pages 1185–1194, New York, NY, USA,
2010. ACM.

[20] C. Cleverdon and M. Keen. Factors determining the Performance of
Indexing Systems. College of Aeronautics, Indiana University, Indiana,
1966.

[21] P. Cremonesi, R. Turrin, E. Lentini, and M. Matteucci. An Evaluation
Methodology for Collaborative Recommender Systems. In Proceedings
of the International Conference on Automated Solutions for Cross Media
Content and Multi-channel Distribution, AXMEDIS’08, pages 224–231,
Piscataway, NJ, USA, 2008. IEEE Computer Society.

[22] E. Cunha, G. Magno, G. Comarela, V. Almeida, M. A. Gonçalves, and
F. Benevenuto. Analyzing the Dynamic Evolution of Hashtags on Twit-
ter: a Language-based Approach. In Proceedings of the Workshop on
Languages in Social Media, LSM ’11, pages 58–65, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[23] F. J. Damerau. A Technique for Computer Detection and Correction of
Spelling Errors. Communications of the ACM, 7(3):171–176, 1964.

135

Bibliography

[24] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[25] H. del Olmo and E. Gaudioso. Evaluation of Recommender Systems: A
New Approach. Expert Systems with Applications, 35(3):790–804, 2008.

[26] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan. Building
Structured Web Community Portals: A Top-down, Compositional, and
Incremental Approach. In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, pages 399–410. VLDB Endowment,
2007.

[27] M. Deshpande and G. Karypis. Item-based top-n recommendation algo-
rithms. ACM Transactions on Information Systems (TOIS), 22(1):143–
177, 2004.

[28] D. A. Easley and J. M. Kleinberg. Networks, Crowds, and Markets
- Reasoning About a Highly Connected World. Cambridge University
Press, New York, NY, USA, 2010. (p. 482ff).

[29] M. Efron. Hashtag Retrieval in a Microblogging Environment. In SIGIR
’10: Proceedings of the 33rd Annual ACM Conference on Research and
Development in Information Retrieval, pages 787–788, New York, NY,
USA, 2010. ACM.

[30] M. Efron. Information Search and Retrieval in Microblogs. Journal of the
American Society for Information Science and Technology (JASIST),
62(6):996–1008, 2011.

[31] G. Furnas, T. Landauer, L. Gomez, and S. Dumais. The Vocabulary
Problem in Human-System Communication. Communications of the
ACM, 30(11):964–971, 1987.

[32] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploiting Hierarchical
Domain Structure to Compute Similarity. ACM Transactions on Infor-
mation Systems (TOIS), 21(1):64–93, 2003.

[33] S. Garcia Esparza, M. O’Mahony, and B. Smyth. Towards Tagging
and Categorization for Micro-Blogs. In 21st National Conference on
Artificial Intelligence and Cognitive Science, AICS, 2010.

136

Bibliography

[34] W. Gassler and E. Zangerle. Recommendation-Based Evolvement of
Dynamic Schemata in Semistructured Information Systems. In Pro-
ceedings of the 22nd Workshop Grundlagen von Datenbanken (GvDB
2010). CEUR-WS.org, ISSN 1613-0073, Vol. 581, available online
http://ceur-ws.org/Vol-581/gvd2010_3_3.pdf, accessed 2012-10-
24, urn:nbn:de:0074-581-7, 2010.

[35] W. Gassler, E. Zangerle, and G. Specht. The Snoopy Concept: Fighting
Heterogeneity in Semistructured and Collaborative Information Systems
by using Recommendations. In Proceedings of the 2011 International
Conference on Collaboration Technologies and Systems, pages 61–68,
Piscataway, NJ, USA, 2011. IEEE Computer Society.

[36] W. Gassler, E. Zangerle, M. Tschuggnall, and G. Specht. SnoopyDB:
Narrowing the Gap between Structured and Unstructured Information
using Recommendations. In Proceedings of the 21st ACM Conference
on Hypertext and Hypermedia (HT), Toronto, Ontario, Canada, pages
271–272, New York, NY, USA, 2010. ACM.

[37] J. Gemmell, T. Schimoler, M. Ramezani, and B. Mobasher. Adapting
K-Nearest Neighbor for Tag Recommendation in Folksonomies. In Pro-
ceedings of the 7th Workshop on Intelligent Techniques for Web Person-
alization & Recommender Systems (ITWP’09) in conjunction with the
21st International Joint Conference on Artificial Intelligence - IJCAI
2009, pages 51–62. CEUR-WS.org, ISSN 1613-0073, Vol. 528, available
online http://ceur-ws.org/Vol-528/paper8.pdf, accessed 2012-10-
24, 2009.

[38] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using Collaborative
Filtering to Weave an Information Tapestry. Communications of the
ACM, 35(12):61–70, 1992.

[39] A. Gunawardana and G. Shani. A Survey of Accuracy Evaluation Met-
rics of Recommendation Tasks. The Journal of Machine Learning Re-
search, 10:2935–2962, 2009.

[40] J. Hannon, M. Bennett, and B. Smyth. Recommending Twitter Users
to Follow Using Content and Collaborative Filtering Approaches. In
RecSys ’10: Proceedings of the fourth ACM Conference on Recommender
systems, pages 199–206, New York, NY, USA, 2010. ACM.

[41] M. Hepp. HyperTwitter: Collaborative Knowledge Engineering via
Twitter Messages. Knowledge Engineering and Management by the
Masses, pages 451–461, 2010.

137

Bibliography

[42] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating Collab-
orative Filtering Recommender Systems. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):53, 2004.

[43] W. Hill and L. Terveen. Using Frequency-of-Mention in Public Conver-
sations for Social Filtering. In Proceedings of the 1996 ACM Conference
on Computer Supported Cooperative Work, CSCW ’96, pages 106–112,
New York, NY, USA, 1996. ACM.

[44] J. Hoffart, F. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo,
and G. Weikum. YAGO2: Exploring and Querying World Knowledge
in Time, Space, Context, and many Languages. In Proceedings of the
20th International Conference Companion on World Wide Web, pages
229–232, New York, NY, USA, 2011. ACM.

[45] R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty, and D. Weld.
Amplifying Community Content Creation with Mixed Initiative Infor-
mation Extraction. In Proceedings of the 27th International Conference
on Human Factors in Computing Systems, pages 1849–1858, New York,
NY, USA, 2009. ACM.

[46] C. Honeycutt and S. C. Herring. Beyond Microblogging: Conversation
and Collaboration via Twitter. In Proceedings of Hawaii Conference on
System Sciences, pages 1–10, Piscataway, NJ, USA, 2009. IEEE Com-
puter Society.

[47] L. Hong and B. Davison. Empirical Study of Topic Modeling in Twitter.
In Proceedings of the First Workshop on Social Media Analytics, pages
80–88, New York, NY, USA, 2010. ACM.

[48] J. Huang, K. Thornton, and E. Efthimiadis. Conversational Tagging in
Twitter. In Proceedings of the 21st ACM Conference on Hypertext and
Hypermedia, pages 173–178, New York, NY, USA, 2010. ACM.

[49] B. Huberman, D. Romero, and F. Wu. Social Networks that Matter:
Twitter under the Microscope. First Monday, 14(1):8, 2009.

[50] D. Irani, S. Webb, C. Pu, and K. Li. Study of Trend-Stuffing on Twitter
through Text Classification. In Proceedings of the 7th annual Collab-
oration, Electronic Messaging, Anti-Abuse and Spam Conference 2010.
Available online at http://ceas.cc/2010/papers/Paper2013.pdf, ac-
cessed 2012-10-24.

138

Bibliography

[51] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender
Systems: An Introduction. Cambridge University Press, Cambridge, UK,
2011.

[52] R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme.
Tag Recommendations in Folksonomies. In Knowledge Discovery in
Databases: Proceedings of the 11th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases, pages 506–514,
Berlin, Heidelberg, New York, 2007. Springer.

[53] A. Java, X. Song, T. Finin, and B. Tseng. Why we Twitter: Under-
standing Microblogging Usage and Communities. In Proceedings of the
9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and
Social Network Analysis, pages 56–65, New York, NY, USA, 2007. ACM.

[54] D. Kim, Y. Jo, I.-C. Moon, and A. Oh. Analysis of Twitter Lists as a
Potential Source for Discovering Latent Characteristics of Users. In Pro-
ceedings of the Workshop on Microblogging at the ACM Conference on
Human Factors in Computer Systems. (CHI Extended Abstracts 2010),
New York, NY, USA, 2010. ACM.

[55] S. Kinsella, M. Wang, J. Breslin, and C. Hayes. Improving Categorisa-
tion in Social Media using Hyperlinks to Structured Data Sources. The
Semanic Web: Research and Applications, pages 390–404, 2011.

[56] K. Kireyev, L. Palen, and K. Anderson. Applications of Topics Models to
Analysis of Disaster-related Twitter Data. In Proceedings of the Work-
shop on Applications for Topic Models: Text and Beyond (co-located
with the International Conference on Neural Information Processing
Systems). available online at http://nips2009.topicmodels.net, ac-
cessed 2012-10-24.

[57] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl. GroupLens: Applying Collaborative Filtering to Usenet
News. Communications of the ACM, 40(3):77–87, 1997.

[58] E. Kouloumpis, T. Wilson, and J. Moore. Twitter Sentiment Analysis:
The Good the Bad and the OMG! In Proceedings of the fifth Interna-
tional AAAI Conference on Weblogs and Social Media, pages 538–541,
Palo Alto, CA, USA, 2011. Association for the Advancement of Artificial
Intelligence (AAAI).

[59] B. Krishnamurthy, P. Gill, and M. Arlitt. A few Chirps about Twitter.
In Proceedings of the first Workshop on Online Social Networks, WOSN

139

Bibliography

’08, pages 19–24, New York, NY, USA, 2008. ACM.

[60] H. Kwak, C. Lee, H. Park, H. Chun, and S. Moon. Novel Aspects
coming from the Directionality of Online Relationships: a Case Study
of Twitter. SIGWEB Newsletter, pages 5:1–5:4, 2011.

[61] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social
Network or a News Media? In Proceedings of the 19th International
Conference on World Wide Web, pages 591–600, New York, NY, USA,
2010. ACM.

[62] S. M. Kywe, T.-A. Hoang, E.-P. Lim, and F. Zhu. On Recommending
Hashtags in Twitter Networks. In SocInfo, volume 7710 of Lecture Notes
in Computer Science, pages 337–350. Springer, 2012.

[63] D. Laniado and P. Mika. Making Sense of Twitter. In International
Semantic Web Conference, volume 6496 of Lecture Notes in Computer
Science, pages 470–485, Berlin, Heidelberg, New York, 2010. Springer.

[64] O. Lassila and R. R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, W3C, Febru-
ary 1999.

[65] J. Lehmann, B. Gonçalves, J. J. Ramasco, and C. Cattuto. Dynamical
Classes of Collective Attention in Twitter. In Proceedings of the 21st In-
ternational Conference on World Wide Web, pages 251–260, New York,
NY, USA, 2012. ACM.

[66] J. Letierce, A. Passant, J. Breslin, and S. Decker. Understanding how
Twitter is Used to Widely Spread Scientific Messages. In Proceedings
of the WebSci10: Extending the Frontiers of Society On-Line. available
online at http://journal.webscience.org/view/events/WebSci10=

3A_Extending_the_Frontiers_of_Society_On-Line, accessed 2012-
10-24, 2010.

[67] V. Levenshtein. Binary Codes with Correction for Deletions and In-
sertions of the Symbol 1. Problemy Peredachi Informatsii, 1(1):12–25,
1965.

[68] G. Linden, B. Smith, and J. York. Amazon.com Recommendations:
Item-to-Item Collaborative Filtering. IEEE Internet Computing, 7:76–
80, 2003.

140

Bibliography

[69] M. Lipczak and E. Milios. Learning in Efficient Tag Recommendation.
In Proceedings of the fourth ACM Conference on Recommender Systems,
pages 167–174, New York, NY, USA, 2010. ACM.

[70] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[71] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a Feather: Ho-
mophily in Social Networks. Annual Review of Sociology, 27:415–444,
2001.

[72] D. Metzler, S. Dumais, and C. Meek. Similarity Measures for Short
Segments of Text. In Proceedings of the 29th European Conference on
IR Research, ECIR 2007, volume 4425 of Lecture Notes in Computer
Science, pages 16–27, Berlin, Heidelberg, New York, 2007. Springer.

[73] G. Miller. The Magical Number Seven, Plus or Minus Two: Some Lim-
its on our Capacity for Processing Information. Psychological Review,
63(2):81, 1956.

[74] B. Mobasher. Recommender Systems. Künstliche Intelligenz, Special
Issue on Web Mining, 3:41–43, 2007.

[75] E. Mustafaraj and P. Metaxas. From Obscurity to Prominence in Min-
utes: Political Speech and Real-Time Search. In Proceedings of the
WebSci 2010: Extending the Frontiers of Society On-Line. available
online at http://journal.webscience.org/view/events/WebSci10=

3A_Extending_the_Frontiers_of_Society_On-Line, accessed 2012-
10-24.

[76] M. Naaman, J. Boase, and C. Lai. Is it Really About Me?: Message
Content in Social Awareness Streams. In Proceedings of the 2010 ACM
Conference on Computer Supported Cooperative Work, pages 189–192,
New York, NY, USA, 2010. ACM.

[77] R. Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, H. Kato, and
Y. Inagaki. Reasonable Tag-based Collaborative Filtering for Social Tag-
ging Systems. In Proceedings of the 2nd ACM Workshop on Information
Credibility on the Web, WICOW ’08, pages 11–18, New York, NY, USA,
2008. ACM.

[78] P. Nasirifard and C. Hayes. Tadvise: a Twitter Assistant based on
Twitter Lists. In Social Informatics, volume 6984 of Lecture Notes in

141

Bibliography

Computer Science, pages 153–160, Berlin, Heidelberg, New York, 2011.
Springer.

[79] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Cita-
tion Ranking: Bringing Order to the Web. Technical Report 1999-66,
Stanford InfoLab, Stanford, CA, USA, 1999.

[80] A. Pak and P. Paroubek. Twitter as a Corpus for Sentiment Analysis
and Opinion Mining. In Proceedings of the Seventh Conference on In-
ternational Language Resources and Evaluation (LREC’10), pages 1320–
1326, Valletta, Malta, 2010. European Language Resources Association
(ELRA).

[81] A. Passant, T. Hastrup, U. Bojars, and J. Breslin. Microblogging:
A Semantic Web and Distributed Approach. In 4th Workshop on
Scripting for the Semantic Web co-located with ESWC 2008. CEUR-
WS.org, ISSN 1613-0073, Vol. 368, available online at http://ceur-

ws.org/Vol-368/, accessed 2012-10-24, urn:nbn:de:0074-368-11.

[82] M. Pazzani and D. Billsus. Content-Based Recommendation Systems. In
The Adaptive Web, volume 4321 of Lecture Notes in Computer Science,
pages 325–341, Berlin, Heidelberg, New York, 2007. Springer.

[83] M. J. Pazzani. A Framework for Collaborative, Content-Based and
Demographic Filtering. Artificial Intelligence Review, 13(5-6):393–408,
1999.

[84] O. Phelan, K. McCarthy, and B. Smyth. Using Twitter to Recommend
Real-Time Topical News. In Proceedings of the third ACM Conference
on Recommender Systems, RecSys ’09, pages 385–388, New York, NY,
USA, 2009. ACM.

[85] L. Potts, J. Seitzinger, D. Jones, and A. Harrison. Tweeting Disaster:
Hashtag Constructions and Collisions. In Proceedings of the 29th ACM
International Conference on Design of Communication, pages 235–240,
New York, NY, USA, 2011. ACM.

[86] D. Ramage, S. Dumais, and D. Liebling. Characterizing Microblogs with
Topic Models. In International AAAI Conference on Weblogs and Social
Media, Palo Alto, CA, USA, 2010. Association for the Advancement of
Artificial Intelligence (AAAI).

[87] P. Resnick and H. Varian. Recommender Systems. Communications of
the ACM, 40(3):56–58, 1997.

142

Bibliography

[88] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender
Systems Handbook. Springer, Berlin, Heidelberg, New York, 2011.

[89] K. Riemer and A. Richter. Tweet Inside: Microblogging in a Corporate
Context. In Proceedings 23rd Bled eConference eTrust: Implications for
the Individual, Enterprises and Society, pages 1–17, 2010.

[90] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gat-
ford. Okapi at TREC-3. In Proceedings of the Text Retrieval Conference
(TREC), pages 109–126, Gaithersburg, MD, USA, 1994. National Insti-
tute of Standards and Technology.

[91] D. Romero, B. Meeder, and J. Kleinberg. Differences in the Mechanics
of Information Diffusion across Topics: Idioms, Political Hashtags, and
Complex Contagion on Twitter. In Proceedings of the 20th International
Conference on World wide web, pages 695–704, New York, NY, USA,
2011. ACM.

[92] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake Shakes Twitter
Users: Real-time Event Detection by Social Sensors. In Proceedings of
the 19th International Conference on World Wide Web, pages 851–860,
New York, NY, USA, 2010. ACM.

[93] G. Salton and C. Buckley. Term-Weighting Approaches in Automatic
Text Retrieval. Information Processing and Management, 24(5):513–
523, 1988.

[94] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based Collab-
orative Filtering Recommendation Algorithms. In Proceedings of the
10th International Conference on World Wide Web, pages 285–295, New
York, NY, USA, 2001. ACM.

[95] J. Schafer, J. Konstan, and J. Riedl. Recommender Systems in E-
Commerce. In Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 158–166, New York, NY, USA, 1999. ACM.

[96] M. Schedl. #nowplaying Madonna: a Large-Scale Evaluation on Es-
timating Similarities between Music Artists and between Movies from
Microblogs. Information Retrieval, pages 1–35, 2012.

[97] S. Sen, J. Vig, and J. Riedl. Tagommenders: Connecting Users to Items
through Tags. In Proceedings of the 18th International Conference on
World Wide Web, pages 671–680, New York, NY, USA, 2009. ACM.

143

Bibliography

[98] U. Shardanand and P. Maes. Social Information Filtering: Algorithms
for Automating Word of Mouth. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’95, pages 210–217,
New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[99] B. Sigurbjörnsson and R. Van Zwol. Flickr Tag Recommendation based
on Collective Knowledge. In Proceeding of the 17th International Con-
ference on World Wide Web, pages 327–336, New York, NY, USA, 2008.
ACM.

[100] G. Specht and T. Kahabka. Information Filtering and Personalization
in Databases Using Gaussian Curves. In Proceedings of the 2000 In-
ternational Symposium on Database Engineering & Applications, pages
16–24, Piscataway, NJ, USA, 2000. IEEE Computer Society.

[101] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating Similarity
Measures: a Large-Scale Study in the Orkut Social Network. In Proceed-
ings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pages 678–684, New York, NY, USA, 2005.
ACM.

[102] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas.
Short Text Classification in Twitter to Improve Information Filtering.
In Proceeding of the 33rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 841–842, New
York, NY, USA, 2010. ACM.

[103] M. Stankovic, M. Rowe, and P. Laublet. Mapping Tweets to Confer-
ence Talks: A Goldmine for Semantics. In Proceedings of the Workshop
on Social Data on the Web 2010, Co-located with ISWC 2010. CEUR-
WS.org, ISSN 1613-0073, Vol. 664, available online at http://ceur-

ws.org/Vol-664/, accessed 2012-10-24, urn:nbn:de:0074-664-4.

[104] M. Steyvers and T. Griffiths. Probabilistic Topic Models. Handbook of
Latent Semantic Analysis, 427(7):424–440, 2007.

[105] X. Su and T. Khoshgoftaar. A Survey of Collaborative Filtering Tech-
niques. Advances in Artificial Intelligence, 2009:4, 2009.

[106] J. Teevan, D. Ramage, and M. Morris. # TwitterSearch: a Comparison
of Microblog Search and Web Search. In Proceedings of the fourth ACM
International Conference on Web Search and Data Mining, pages 35–44,
New York, NY, USA, 2011. ACM.

144

Bibliography

[107] K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended Accounts
in Retrospect: an Analysis of Twitter Spam. In Proceedings of the
2011 ACM SIGCOMM Conference on Internet Measurement Confer-
ence, pages 243–258, New York, NY, USA, 2011. ACM.

[108] O. Tsur and A. Rappoport. What’s in a hashtag?: content based pre-
diction of the spread of ideas in microblogging communities. In WSDM,
pages 643–652, New York, NY, USA, 2012. ACM.

[109] A. Tumasjan, T. Sprenger, P. Sandner, and I. Welpe. Predicting Elec-
tions with Twitter: What 140 Characters Reveal about Political Senti-
ment. In Proceedings of the Fourth International AAAI Conference on
Weblogs and Social Media, pages 178–185, Palo Alto, CA, USA, 2010.
AAAI Press.

[110] S. Vieweg, A. Hughes, K. Starbird, and L. Palen. Microblogging during
Two Natural Hazards Events: What Twitter may Contribute to Situa-
tional Awareness. In Proceedings of the 28th International Conference
on Human Factors in Computing Systems, pages 1079–1088, New York,
NY, USA, 2010. ACM.

[111] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer. Se-
mantic wikipedia. In Proceedings of the 15th International Conference
on World Wide Web, pages 585–594, New York, NY, USA, 2006. ACM.

[112] D. S. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty, R. Hoffmann,
K. Patel, and M. Skinner. Intelligence in Wikipedia. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, pages 1609–1614, Palo Alto, CA, USA, 2008. AAAI Press.

[113] J. Weng, E. Lim, J. Jiang, and Q. He. Twitterrank: Finding Topic-
Sensitive Influential Twitterers. In Proceedings of the third ACM Inter-
national Conference on Web Search and Data Mining, pages 261–270,
New York, NY, USA, 2010. ACM.

[114] F. Wu and D. Weld. Autonomously Semantifying Wikipedia. In Pro-
ceedings of the sixteenth ACM Conference on Conference on information
and knowledge management, pages 41–50, New York, NY, USA, 2007.
ACM.

[115] L. Yang, T. Sun, M. Zhang, and Q. Mei. We Know What@ You#
Tag: Does the Dual Role Affect Hashtag Adoption? In Proceedings of
the 21st International Conference on World Wide Web, pages 261–270,
New York, NY, USA, 2012. ACM.

145

Bibliography

[116] E. Zangerle and W. Gassler. Dealing with Structure Heterogeneity in Se-
mantic Collaborative Environments. In S. Brüggemann and C. d’Amato,
editors, Collaboration and the Semantic Web: Social Networks, Knowl-
edge Networks and Knowledge Resources, pages 1–20. IGI Publishers,
Hershey, Pennsylvania (USA), 2012.

[117] E. Zangerle, W. Gassler, and G. Specht. Recommending Structure in
Collaborative Semistructured Information Systems. In RecSys ’10: Pro-
ceedings of the third ACM Conference on Recommender Systems, pages
141–145, New York, NY, USA, 2010. ACM.

[118] E. Zangerle, W. Gassler, and G. Specht. Recommending #-tags in
Twitter. In Proceedings of the Workshop on Semantic Adaptive Social
Web 2011 in connection with the 19th International Conference on User
Modeling, Adaptation and Personalization, UMAP 2011, pages 67–78,
Gerona, Spain, 2011. CEUR-WS.org, ISSN 1613-0073, Vol. 730, available
online at http://ceur-ws.org/Vol-730/paper7.pdf, accessed 2012-
10-24, urn:nbn:de:0074-730-4.

[119] E. Zangerle, W. Gassler, and G. Specht. Using Tag Recommendations
to Homogenize Folksonomies in Microblogging Environments. In Social
Informatics, volume 6984 of Lecture Notes in Computer Science, pages
113–126. Springer, Berlin, Heidelberg, New York, 2011.

[120] J. Zobel and A. Moffat. Exploring the Similarity Space. In ACM SIGIR
Forum, volume 32, pages 18–34, New York, NY, USA, 1998. ACM.

146

Curriculum Vitae

Dipl.-Ing. Eva Zangerle
eva.zangerle@uibk.ac.at

http://www.evazangerle.at

Education

• PhD Studies at the University of Innsbruck, Institute of Computer Sci-
ence in the field of Databases and Information Systems (since 09/2007).

• Master Studies at the University of Innsbruck, Institute of Computer
Science. Master Studies of Computer Science (04/2006–09/2007).

• Bachelor Studies at the University of Innsbruck, Institute of Computer
Science (09/2002–04/2006).

• Commercial College (Handelsakademie), Landeck (09/1997–06/2002).

Work Experience

• Research and Teaching Assistant, University of Innsbruck, Insti-
tute of Computer Science, Databases and Information Systems Research
Group (since 2007).

• Proof-Reader, self-employed, Innsbruck (since 2001).

• Student Assistant, University of Innsbruck, Institute of Computer
Science, Databases and Information Systems Research Group (03/2007–
06/2007).

Teaching Experience

• Einführung in die Informatik (Tutorial), winter term 07/08.

• New Database Models (Tutorial), summer term 2008.

• Bachelor Seminar (Tutorial), summer term 2008.

• Einführung in die Informatik (Tutorial, Coordination), winter term
08/09.

• New Database Models (Lecture and Tutorial), summer term 2009.

• Einführung in die Informatik (Tutorial), winter term 09/10.

• Information Systems (Lecture), summer term 2010.

• Einführung in die Informatik (Tutorial), winter term 10/11.

• Information Systems (Lecture), summer term 2011.

• Data Warehouse Systems (Tutorial), winter term 11/12.

• Information Retrieval (Lecture, Tutorial), winter term 12/13.

147

Supervised Bachelor Theses

• Konzeption und Implementierung eines Übungs-Management-Tools, Mar-
tin Bürgler, Clemens Müller, 2008.

• Entwicklung und Implementierung eines Wikipedia Annotation Layers,
Rainer Frick, 2009.

• Weiterentwicklung und Optimierung der Applikation u2l, Philipp Val-
lant, 2009.

• Entwicklung des SQL-Tutors, Lukas Schwaiger, 2010.

• Weiterentwicklung und Optimierung der Applikation u2l, Florian Stäuble,
2010.

• Entwicklung einer Web-Oberfläche für SnoopyDB, Georg Unterthurner,
2010.

• Extraktion von semi-strukturierten Daten aus dem Web, Julien Poisson-
nier, 2011.

• Social-Media Konzepte in Recommendation-unterstützten Information-
ssystemen, David Hoppe, 2012.

• Entwicklung eines Frontends für das Hash-o-Mender Projekt, Benjamin
Murauer, 2012.

• Entwicklung eines leichtgewichtigen HTML5 Web-Client zur Umsetzung
von Social-Media Konzepten in nformationssystemen, Thomas Fray-
denegg, 2012.

• Entwicklung eines leichtgewichtigen Web-Clients für ein Hashtag-basiertes
PIM-System, Robert Bierbauer, 2012.

• Entwicklung eines selbstlernenden Vorschlagmoduls für ein Hashtag-
basiertes PIM-System, Markus Müller, 2012.

• Entwicklung des freien Lernsystems Kakadu, Alex Lanz, 2012.

• Entwicklung eines leichtgewichtigen Web-Clients für das Lernsystem
Kakadu, Georg Schmidhammer, 2012.

• FaceFinder: Gesichtserkennung in OwnCloud, Aaron Messner, 2012.

Supervised Master Theses

• Reasoning with Ontologies in Databases and Optimization Strategies,
Doris Silbernagl, 2009.

• A SnoopyDB Prototype, Michael Tschuggnall, 2010.

• Exploring Structures of Infoboxes in Wikipedia, Alexander Larcher,
2010.

• Recommendation of Structured Tags, summer term 2010, Martin Bürgler,
2010.

148

• Fast and Scalable Recommendation Computation in Semistructured Col-
laborative Information Systems, Tim Hannemann, 2010.

Awards and Grants

• Research Scholarship of the University of Innsbruck (Nachwuchsförderung
der Universität Innsbruck, 11/2011–11/2012.

• Tyrolean Science Fund (Tiroler Wissenschaftsfonds), 12/2012–11/2013.

• Österreichische Forschungsförderungsgesellschaft FFG (Innovationsscheck
together with FIOconsult e.U.), 10/2012–10/2013.

Professional Memberships

• Deutsche Gesellschaft für Informatik

• Association for Computing Machinery

Professional Activities

• Member of PC, 9th International Conference on Semantic Systems (I-
Semantics), Graz, 2013.

• Member of PC, 8th International Conference on Semantic Systems (I-
Semantics), Graz, 2012.

• Head of Organization Commitee, Grundlagen von Datenbanken Work-
shop 2011, GI Fachgruppe für Datenbanken.

Other Activities

• FIT—Frauen in die Technik, Austrian initiative aiming at attracting
girls for technical studies, various talks about studying computer science,
short tutorials.

• Admina.at, Hardware Tutorials for female students, University of Inns-
bruck.

• Girl’s day, Tyrolean programm aiming at attracting young girls to tech-
nical professions, teaching basic programming skills to girls aged 12–16,
University of Innsbruck.

• Infoküche Podcast, Regular contributor to the Infoküche Podcast con-
cerned with Information Systems, http://www.infokueche.at)

Book

• Stefan Pröll, Eva Zangerle, Wolfgang Gassler. MySQL: Das Handbuch
für Administratoren, Galileo Computing, Bonn, Germany, 2011,
http://www.mysqladmin.at.

149

