“Sorry, I was hacked”
A Classification of Compromised Twitter Accounts

Eva Zangerle
Databases and Information Systems
Institute of Computer Science
University of Innsbruck, Austria
eva.zangerle@uibk.ac.at

Günther Specht
Databases and Information Systems
Institute of Computer Science
University of Innsbruck, Austria
guenther.specht@uibk.ac.at

1. INTRODUCTION
Online social networks have become important means of communication within the last decade, enabling users to reach out to other users to communicate and spread information. The microblogging platform Twitter is among the most popular platforms, serving approximately 200 million users [20] and issuing a total of 400 million tweets per day [30]. The vast amount of reachable users and the amount of interchanged messages on the Twitter platform also attracts cyber-criminals, whose objective is to spread spam messages containing URLs of affiliate websites. This results in the fact that 8% of all URLs posted on Twitter lead to scam, malware or phishing websites [12]. Furthermore, the fact that the click-through rate (number of URLs clicked by users) of spam on Twitter is two orders of a magnitude higher than for email spam makes Twitter even more attractive to cyber-criminals. An analysis of 200 million tweets revealed that 50% of spam tweets were used to promote free music, games, books, jewelry, electronics and vehicles. Also, gambling and financial products, such as loans, are promoted via spam on Twitter [12]. Within the last years, four main approaches for spreading spam on social networks have been observed [9, 10]: (i) setting up a fake account which is solely used for spreading spam messages, (ii) setting up a bot (a program automatically performing a certain task, i.e., sending tweets), (iii) setting up a cyborg (either a bot-assisted human or a human-assisted bot [9]) or (iv) compromising accounts of human users. Currently, the primary strategy for spam attacks is the compromising of accounts [12]. We define a Twitter account as compromised if the according account was hacked by a third party and subsequently used for spreading tweets, direct messages or following and unfollowing users without the knowledge of the original account owner. Chronologically, the compromising of an account can be depicted as follows: over a certain period of time, the user’s tweets exhibit a characteristic behavior when tweeting (i.e., language used, URLs and hashtags added to the tweet). At a certain point of time, the user’s account gets hacked and cyber-criminals hijack the account in order to spread spam and wrong information to the user’s followers pretending that these tweets originate from the legitimate account owner. Hence, compromised accounts exploit the trust relationship between the original owner of the compromised account and the user’s followers and followees. After a certain amount of time, the user detects that the account was hacked, requests a password reset from the Twitter platform and re-
captures the account. Often, the user subsequently sends out a tweet to all followers stating e.g. “If I sent you spams via DM, I’m really sorry - my account got hacked.” in order to repudiate from possible malicious tweets or direct messages (DM) sent from the account. According to Twitter’s help center, the compromising of accounts can be lead back to various reasons: “Accounts may become compromised if you’ve entrusted your username and password to a malicious third-party application or website, if your Twitter account is vulnerable due to a weak password, if viruses or malware on your computer are collecting passwords, or if you’re on a compromised network.” [28].

This work sets out to analyze the behavior of Twitter users in the case of having their account hacked and compromised. To get a better understanding of how Twitter users deal with getting their accounts hacked, we analyze tweets of users who state that their account was hacked and classify these tweets in order to infer behavioral information. Given this overall goal, we address the following research questions in this paper:

• How do Twitter users react after having recognized that their account was compromised?

• Which actions do these users take after having been hacked?

The remainder of this paper is structured as follows. Section 2 describes the microblogging platform Twitter, the data set underlying our analysis and the according crawling procedure. Section 3 covers the empirical evaluation including general data set statistics and Section 4 describes the classification approach we facilitated and the metrics we made use of for the evaluation. Section 5 contains the results of the behavioral classification of compromised Twitter accounts and we discuss the results in Section 6. Section 7 features research related to our work and we conclude our paper in Section 8.

2. BACKGROUND AND DATA

In the following section, we briefly sketch the Twitter platform and its characteristics. Subsequently, we describe the crawling procedure facilitated for the data set underlying our analysis.

2.1 Twitter

Twitter is a microblogging platform which allows its users to post tweets which are at most 140 characters long. User A may follow user B which ensures that user A receives all of user B’s tweets. Such relationships are directed and user A is the follower of user B, whereas user B is the followee. Users can also directly address other users by making use of mentions. By stating a username within a tweet, the tweet is directly delivered to the specific user. Another characteristic feature of the Twitter platform are retweets, where users can propagate tweets originally posted by other users by redistributing these tweets to their own followers. Retweeted messages can be identified by “RT @username” followed by the original tweet text, where @username is the name of the user who originally posted this tweet. Furthermore, hashtags can be used for a manual categorization of tweets by stating the topic preceded by a hash-sign within the tweet (e.g., #android or #syria).

Twitter handles abuse based on a set of strict rules [26] which form the basis of an automated detection algorithm which deactivates accounts exhibiting behavior which might indicate spam [24]. Twitter’s detection algorithm is based on various behavioral indicators as e.g., number of unsolicited mentions, issuing duplicated messages or gaining a large number of followers within a short period of time. Thomas et al. found that 77% of all spamming accounts are suspended within one day and 92% are suspended within three days [24].

2.2 Twitter Data Collection

In order to gather a representative data set underlying our analysis, we facilitate the following data collection methodology. We crawled Twitter via the Twitter Filter API [25] which allows for filtering the public Twitter stream for given keywords. To particularly filter for tweets related to hacked accounts, we searched the Twitter stream for tweets containing the strings “hacked” or “compromised” and the string “account”. In total, we were able to gather 1,231,468 tweets between December 1st 2012 and July 30th 2013. The Filter API delivers all tweets matching the given query up to a rate limiting equal to the rate limiting of the public streaming API (approximately 1% of all tweets). As the number of tweets matching our query constantly was below this limit (maximum number of tweets crawled per day: 42,670), we were able to crawl all tweets matching the given filter keywords during the given time period.

3. DATA SET ANALYSIS

In the following section, we present a first analysis of the crawled data set. The data set comprises a total of 1,231,468 tweets published by 839,013 distinct users. Figure 1 features a plot of the number of tweets gathered per day for the given crawling period. As for the three peaks pictured, the peak around 2013/02/18 and 2013/02/19 is related to the hack of Burger King’s Twitter account. The peak on 2013/04/23 is concerned with the hack of the Twitter account of Associated Press. The peak around 2013/07/08 and 2013/07/09 is related to Niall Horan’s hacked account where the message of this hack was widely spread by his fans.
Table 1: Data Set Characteristics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweets</td>
<td>1,231,468</td>
<td>Original tweets</td>
<td>384,466</td>
</tr>
<tr>
<td>Distinct users</td>
<td>839,013</td>
<td>Avg. tweets/d</td>
<td>5,331</td>
</tr>
<tr>
<td>Retweets</td>
<td>339,824</td>
<td>Min. tweets/d</td>
<td>262</td>
</tr>
<tr>
<td>Hashtag occur.</td>
<td>179,994</td>
<td>Max. tweets/d</td>
<td>42,670</td>
</tr>
<tr>
<td>URLs</td>
<td>125,603</td>
<td>Mentions</td>
<td>1,165,524</td>
</tr>
</tbody>
</table>

Table 2: Hashtag Occurrences

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Occurr.</th>
<th>Occurr. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#hacked</td>
<td>17,123</td>
<td>9.51%</td>
</tr>
<tr>
<td>#twitter</td>
<td>8,506</td>
<td>4.73%</td>
</tr>
<tr>
<td>#facebook</td>
<td>3,788</td>
<td>2.10%</td>
</tr>
<tr>
<td>#instagram</td>
<td>3,328</td>
<td>1.84%</td>
</tr>
<tr>
<td>#lulz</td>
<td>2,838</td>
<td>1.58%</td>
</tr>
</tbody>
</table>

Table 4.1: Classification

In this work, we propose to view the analysis of a user’s behavior in case of a compromised Twitter account as a classification problem. Thus, we performed a classification task based on the data set previously described in Section 3. We applied a supervised learning algorithm aiming at finding classes of users reacting similarly to having their Twitter account compromised. We relied on Support Vector Machines (SVM) for the classification of tweets. SVMs are suited for the classification of texts and basically represent texts as n-dimensional feature vectors based on a bag-of-words representation [15]. Based on this vector-representation in an n-dimensional space, a SVM aims at finding virtual hyperplanes which divide the classes best based on a previous training phase. In our case, we made use of a linear SVM kernel. We performed experiments with a set of other classification methods (including non-linear SVM, Naïve Bayes’ classification and kNN classification). In particular, we made use of the scikit-learn Python toolkit (which internally relies on libSVM [8] for SVM classification), which provides implementations for each of these classification methods [22]. In order to tune the parameters of the individual classification methods, we made use of a grid search which spans a grid of parameters for the given classification methods and subsequently cross-validates all possible combinations of parameters aiming at finding optimal parameters [14]. The results of the grid search process over all proposed classification methods showed that SVMs performed best for our prerequisites.

As for the input data for the training-, test- and the actual classification phase, we relied on the text of the tweets and did not incorporate any further meta data as i.e., the time the tweet was sent, user details or the user’s tweeting history. Hence, we aim at classifying single, isolated tweets. In a first step, we performed the following preliminary tasks on the given data. These tasks included removing all non-English tweets and all retweets. Furthermore, we treated direct messages and replies (featuring a mention of one or more users) equal to original messages as also direct messages and replies are used to state that a particular account was hacked. Syntactically, these preliminary tasks also included lower-casing all tweets and removing punctuation. Additionally, we performed tests to assess whether further preprocessing steps (stemming, removal of stopwords, URLs, hashtags or user mentions from the input tweets) would influence the classification quality. Hence, we also included these preprocessing steps into the grid search process in order to find optimal SVM classification parameters. This enabled us to evaluate which of the aforementioned preprocessing steps have a positive affect on the classification process and outcome (see Section 5). As for the stemming process, we made use of the Python implementation of the Porter stemming algorithm for the English language [23] provided by the Natural Language Toolkit (NLTK) [4]. The result of these evaluations showed that the removal of URLs from tweets as a preprocessing step improves the quality of classifications. However, removing mentions of users, hashtags or stopwords or performing stemming on our data did not increase the performance of the SVM classification process and hence, we did not include these steps in the preprocessing phase.

4.1 Metrics

For the evaluation of the performed classification tasks and also for the comparison of various classification approaches, we relied on the traditional IR-metrics recall, precision, F-measure and accuracy [32]. We present the results of the classification as confusion matrices, an example of a confusion matrix can be seen in Table 3. In this matrix, the rows marked as True denote the actual behavioral classes (in this example termed as class1 and class2), whereas the columns marked as Predicted denote the classes computed by the SVM classifier. The entries a and d represent the number of correctly classified items of class 1 resp. class 2, b and c represent the number of falsely classified items for class 1 resp. class 2. The recall for a given class can be defined as the ratio of the number of tweets which were correctly classified to the
number of actual tweets in the class. In order to illustrate this metric, we can also define recall based on a confusion matrix as shown in Table 3 as $r = a/(a + b)$. In contrast, precision can be defined as the ratio of the number of tweets which were correctly classified to the total number of tweets predicted in this class. In terms of the confusion matrix, precision can be computed as $p = a/(a + c)$. The F_1-measure combines both precision and recall into one measure and is the harmonic mean of recall and precision ($F_1 = (r * p * 2)/(r + p)$). Accuracy is defined as the total number of correctly classified items over all classes, i.e., $acc = (a + d)/(a + b + c + d)$.

The classification experiments were performed using a 5-fold cross-validation in order to provide reliable results on the quality of the classification process. For k-fold cross validation, we randomly split the training set into k complementary folds. ($k - 1$) folds are used as a training set for the classifier whereas one fold is retained and serves as the test set for the classifier evaluation. This procedure is repeated k times with each fold used once as the test sample. The metrics resulting from the evaluation runs of the k folds are then averaged.

4.2 Input Data

In a first step—prior to the actual classification of how users react to a hacked account—we needed to filter out those tweets which actually state that the according Twitter account has been hacked. This is due to the fact that crawling for the keywords “hacked” and “compromised” also returns tweets of users stating that e.g., a friend’s account was hacked (e.g. “@JuliaMWB I think your account was hacked, friend!”) or that the user’s email or other social network account was hacked (e.g., “If you get an e-mail from me asking how are you, don’t click the link. My gmail account was hacked and they blasted an email with the link”), which can also be inferred from the hashtags used (cf. Table 2). However, our goal is to analyze tweets where the users state that their own Twitter account has been hacked, as e.g. in “Apparently my account was hacked. I haven’t sent anyone a direct message. #Stupidhackers”. Hence, we performed a binary classification task for filtering these relevant messages. We performed this classification by applying a linear SVM classifier using the same procedure as for the actual final classification task (as described in Section 4). This classification resulted in a set of 358,639 tweets relevant for our further analysis (out of 859,214 input tweets which resulted from stripping the original data set from retweets and duplicates).

4.3 Training and Test Data

For the training and test phases of the SVM classifier, we randomly selected 2,500 tweets from within the data set and manually classified these tweets for each of the two classification processes. These classified sets of tweets serve as input for the k-fold cross-validation.

5. CLASSIFICATION RESULTS

In the following we present the results of the classification task as previously described. In a first step, we performed the preliminary classification as depicted in Section 4.2. The confusion matrix for the preliminary classification of tweets can be seen in Table 4. We achieved an overall accuracy of 82.51% and an overall F_1-score of 82.33%. In terms of classification performance, these results are comparable with other binary classification tasks for Twitter data, e.g. when classifying spam or credible messages on Twitter [2, 7]. As we are subsequently performing the behavioral classification process on all true positives (entry a in Table 3), a high value for the class MyAccount (86.21%) is crucial whereas accuracy for the other class is negligible.

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Class1</th>
<th>Class2</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Class1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Class2</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Table 3: Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>True MyAccount</td>
<td>86.21%</td>
</tr>
<tr>
<td>Other</td>
<td>13.79%</td>
</tr>
</tbody>
</table>

Table 4: Confusion Matrix for Preliminary Classification

After a manual exploration of the tweets, we decided to employ the following classes for the behavioral classification task:

1. Users who state that their account was hacked (e.g., “ooh looks like I’ve been hacked! That explains the inability to get into my account! Will be putting that right”).
2. Users stating that their account has been hacked who immediately apologize for any unsolicited tweets (e.g., “My Account was hacked pls ignore all the tweets I sent today. I apologize for the inconvenience”).
3. Users stating that their account has been hacked who immediately apologize for any unsolicited direct messages (e.g., “If I sent you spams via DM, I’m really sorry - my account got hacked.”).
4. Users who state that they were hacked and moved to a new account (e.g., “Hey guys, go follow my new account because this one is hacked and is sending out spam”).
5. Users who have been hacked and state that they now changed their password (e.g., “Very sorry everyone, my account was hacked. password changed, hopefully that does the trick.”).
6. Users who state that they were “hacked” by a friend or relative, where hacked refers to e.g., leaving a device unattended (e.g., “my brother hacked my account sorry”).
7. Other tweets, not belonging to any of the above described classes (mostly related to wrongly classified tweets in the preliminary classification step).

Given these classes, we performed the classification using the procedure described in Section 4. In the following, we present and discuss the results of the classification which can be seen in the pie chart pictured in Figure 2. The most...
prominent category are users stating that their account has been hacked and that they moved to a new account, this class amounts to 27.30%. Within these tweets, the users state that they created a new account and ask their followers to follow their new account in order to receive their updates. 23.36% of all tweets in the analyzed data set simply state that the according account has been hacked with no further information given (except for occasional cursing). 13.87% of the users within our data set apologize for unsolicited tweets sent from their account and 13.68% apologize for unsolicited direct messages sent to their followers during the compromising of their account. Furthermore, 3.87% state that their account was hacked and that they now changed their Twitter password which conforms to Twitter’s advice for compromised accounts [28].

To confirm that the overlap between the classes we facilitated was kept at a minimum, we further examined the classified tweets. Therefore, we extracted the most discriminant features for each class from the trained classifier (as described in Section 4). This results in a list of terms most characteristic for each of the seven classes. I.e., the most discriminant features for class 3 (sorry for direct messages) are e.g., ‘dm’, ‘direct’, ‘message’ and ‘sorry’. Based on these lists of features, we searched for tweets within our data set which contain features from multiple classes in order to check whether tweets could be assigned to multiple classes. The (semantically) most similar classes are classes 2 (sorry for tweets) and 3 (sorry for direct messages), therefore we show the overlap for these two classes in the following. Our analysis showed that a total of 737 tweets can be assigned to either class 2 or 3. When further examining these tweets manually, we observe that this overlap is related to users apologizing for having sent unsolicited tweets and direct messages within one single tweet. Naturally, this tweet can be assigned to both of these classes and hence, leads to an overlap within these two classes which can hardly be avoided. Still we believe that the distinction between class 2 (sorry for tweets) and 3 (sorry for direct messages) is important as it also reveals information about how cyber-criminals spread information to the followers of the compromised user account.

6. DISCUSSION

In the following, we aim at getting a closer look at the results and discuss the implications of our findings. Based on the results of the classification, we performed a manual exploration of the classes to find further evidence of how Twitter users react to having their account hacked. As for class 1, users who state that they got hacked within a tweet, 20,975 tweets are posted to ask a particular other user to follow back as this particular following-relationship has been lost during the compromising of the account. This amounts to 25.04% of all tweets within this class. The fact that 27.30% of all tweets state that the respective user created a new account is remarkable as the Twitter Support Page advises users to (i) change the password, (ii) revoke connection to third-party applications and (iii) update the passwords in the trusted third-party applications [28]. The deactivation and subsequent deletion of an account, resp. the creation of a new account is not mentioned on these support pages. This user behavior leaves the according account to cyber-criminals who continue to tweet via this account. However, 77% of spam accounts are detected within one day. There-

<table>
<thead>
<tr>
<th></th>
<th>Class1</th>
<th>Class2</th>
<th>Class3</th>
<th>Class4</th>
<th>Class5</th>
<th>Class6</th>
<th>Class7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class1</td>
<td>80.89%</td>
<td>0.89%</td>
<td>4.44%</td>
<td>9.33%</td>
<td>0.00%</td>
<td>4.00%</td>
<td>0.44%</td>
</tr>
<tr>
<td>Class2</td>
<td>38.10%</td>
<td>42.86%</td>
<td>14.29%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>4.76%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Class3</td>
<td>25.58%</td>
<td>6.98%</td>
<td>65.12%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>2.33%</td>
</tr>
<tr>
<td>True</td>
<td>Class4</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>98.68%</td>
<td>0.00%</td>
<td>1.32%</td>
</tr>
<tr>
<td>Class5</td>
<td>36.36%</td>
<td>0.00%</td>
<td>18.18%</td>
<td>0.00%</td>
<td>36.36%</td>
<td>9.09%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Class6</td>
<td>25.00%</td>
<td>0.00%</td>
<td>8.33%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>66.67%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Class7</td>
<td>8.33%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>33.33%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>58.33%</td>
</tr>
</tbody>
</table>

Table 5: Confusion Matrix for Behavioral Classification

![Figure 2: Classification Results](image-url)
fore, a second strategy applied by cyber-criminals is to not make use of the account for a certain amount of time before starting to spread spam (also referred to as the dormancy period) [24]. Within our data set, a total of 3,236 users who tweet that they moved to a new account also state that they deleted (or will delete) their old account (3.36% of all users within this class). Apparently, users rarely seek for help by directly contacting Twitter’s @support account, as our data set shows only 1,105 tweets directed at this account. Knowing that abandoned accounts can still be used by cyber-criminals and that Twitter users invest considerable effort for redirecting followers to their new account, it appears likely that Twitter users hardly know how to appropriately handle a compromised account. Furthermore, Twitter also provides guidelines for safe tweeting [27]. These guidelines advise users to (i) use a strong password, (ii) use login verification, (iii) be careful about (untrusted) third-party apps and suspicious links (phishing) and (iv) be cautious about spyware and viruses on their computer. However, still a large number of accounts get compromised and users still seem miss- and underinformed. Therefore, it seems advisable to further promote help and support mechanisms and provide more information about how to deal with compromised accounts, i.e., that a compromised account can be restored.

7. RELATED WORK

Work related to our research can be grouped into two streams of research: (i) spam and its detection within social networks, in particular on Twitter and (ii) the analysis of behavior and relationships of cyber-criminals within social networks. The abuse of social websites aiming at spreading spam to users has been widely investigated within the last years. Heymann et al. [13] distinguish three different categories of countermeasures to cope with spam on social networks: (i) detection, (ii) demotion and (iii) prevention. The detection of spam can be accomplished automatically by pattern-based classification or users who actively report spam. The strategy of demotion is related to ranking spam contributions lower in e.g., search results whereas prevention is concerned with limiting automated interaction with social platforms (e.g., by using captchas).

Grier et al. find that spammers primarily make use of compromised accounts in order to spread spam [12]. The authors analyzed URLs within tweets and found that 8% of all URLs posted are related to phishing or spam attacks. The automatic detection of compromised accounts has recently been studied by Egele et al. [10]. The authors aim at creating a behavioral profile for each user for which they focus on predefined features and detect abnormal behavior by comparing the behavioral profile to the features of a new tweet \(t \). Subsequently, a tweet database is searched for messages similar to \(t \) where similarity is defined as the textual similarity between tweets and the similarity of URLs mentioned in these tweets. If the system detects more than ten highly similar messages, the account is flagged as compromised. The authors argue that one single abnormal tweet does not necessarily imply a compromised account, as the user e.g., might have changed the Twitter software or app she uses for tweeting.

Thomas et al. analyzed the lifespan of Twitter spam accounts and found that Twitter is able to detect 77% of all spam accounts within the first day of creation and 92% of all spam accounts are detected within three days [24]. Generally, the detection of spam has been studied widely. Lee et al. create social honeypots on Twitter to gather information about social spam behavior and subsequently propose methods for identifying spam [17, 18]. Lee and Kim analyze redirect chains of URLs used in spam tweets in order to detect spam [19]. McChord and Chuah propose to facilitate traditional classifiers employing content-based features to classify spam [21], whereas Benevenuto et al. make use of content- and behavioral features to identify spammers [2]. The use of topics of collective attention on Twitter (e.g., viral videos, memes or breaking news) for disseminating spam has been studied in [16]. Bilge et al. observed that spam attacks get more popular with a rising popularity of online social networks [3]. In this particular work, the authors focus on identity theft attacks where profiles of users in online social networks are copied and then used to send out contact or friendship requests to users who already connected to the original user.

The social relationships of spam accounts has been studied in [11, 31]. The authors find that cyber-criminals on Twitter form a small-world network and also strive for non-criminal followers in order to reach a wider audience. Chu et al. introduce the distinction between human, bot and cyborg users of Twitter [9]. The authors present a classification method for these three categories of users which also incorporates a spam detection mechanism based on Bayesian classification. Also, Wagner et al. present an approach aiming at identifying bots based on a feature-based classification method [29].

8. CONCLUSION AND FUTURE WORK

In this work we ask how Twitter users deal with having their account hacked and compromised. We analyzed a data set of 1,231,468 tweets and presented a classification of such tweets aiming at finding classes of users reacting similarly to a compromised account. In particular, 23.36% of all users simply state that their account was hacked, whereas a total of 27.55% apologize for unsolicited tweets or direct messages which have been sent via their compromised account. Furthermore, we find that 27.30% of all analyzed tweets state that the user changed to a new account after having had her Twitter account compromised supposedly due to a lack of information in regards to how to recapture a compromised account.

As for future work, we intend to conduct a survey of Twitter users who had their accounts hacked aiming at identifying how account compromising influences user behavior on the Twitter platform. Additionally, we aim at getting a better understanding of which actions users take after having their account hacked, e.g., how users manage hacked accounts to prevent additional damage. Furthermore, we plan to investigate how user trust in the Twitter platform is influenced by account compromising and which implications a possibly changed trust level has on the user’s behavior.

9. REFERENCES

[1] #TagDef hashtag definition directory.