
The Object Oriented Document Model of a Meta System for
Existing Digital Libraries

Michael G. Bauer
Institut für Informatik, TU München

Orleansstraße 34, D-81667 München, Germany
bauermi@in.tum.de

Günther Specht
Fakultät für Informatik, TU Ilmenau

Postfach 100565, D-98684 Ilmenau, Germany
gspecht@prakinf.tu-ilmenau.de

Abstract

In this paper we describe an object oriented document
model of a meta system for existing digital library systems.
We show how we solve heterogenity of existing systems in
the context of linking and annotating existing digital library
documents with a slim and simple approach.

Our approach is already implemented in the system OM-
NIS/2, which is an advanced meta system for existing digi-
tal library systems and enhances existing digital library sys-
tems or retrieval systems by additional storing and indexing
of user-defined multimedia documents, automatic and per-
sonal linking concepts, annotations, filtering and personal-
isation.

1. Introduction

With the growing number of information that is avail-
able to the individual and the different media types, many
different digital library systems were developed. These sys-
tems are established tools, but users still miss features that
would improve their ability to work with documents in dig-
ital library systems as it is common with books printed on
paper (i.e. adding references, marking pages and annotat-
ing text). This led to the development of the OMNIS/2
system1 which is a meta system for various existing dig-
ital libraries [7]. It equips users with a tool that enables
them to search several systems at once and especially to
benefit from links between documents of different digital

1OMNIS/2 is funded by DFG (German Research Foundation) within
the research initiative “V3D2” (“Distribited Processing and Delivery of
Digital Documents”) and is part of the Global Inventory Project (an initia-
tive of the G7-countries).

library systems (cross linking of documents). Users are
able to add links by themselves (with an authoring tool that
is part of OMNIS/2) and we will soon offer links that are
generated automatically whenever possible (e.g. for bibli-
ographic references or keywords). These features are often
asked for by research groups who work with specialized li-
brary systems (e.g. VD17, a digital library of all German
printings of the 17th century, a former project) [2]. Merg-
ing links and documents does not require a modification of
the source documents and can even be done without har-
vesting, which would collect all documents and store the
documents in an own huge database. This is achieved by a
technique which adds the links at run-time using XSLT [9]
right before the documents are presented to the user. We
call this technique a posteriori cross linking [1]. In addi-
tion it is possible to annotate external documents without a
write permission for the library systems which hold the an-
notated documents. The annotations are not limited to text
and can consist of multimedia documents. Users are able
to use a personalisation feature to create their own view on
the documents and to “work” with digital library systems
by themselves. In its current version the system has already
access to some 80000 documents of the digital library sys-
tem of the Faculty for Computer Science at TU München.
As the integration of other digital library systems and media
libraries is planned (or already underway) and diversity be-
tween the digital library is significant we started developing
an object oriented document model to overcome this hetero-
genity. The document model is one of the key features of
OMNIS/2. Most of the enhancements the system offers (as
a posteriori crosslinking, annotations, personalisation) are
based on this document model.

We describe the document model in detail in section 2. In
section 3 we explain the architecture of OMNIS/2 and show
the environment in which the document model is success-
fully used. We then give a very short overview on related
work (section 4) before we end the paper with a summary
(section 5).

specht
Published in: First Int. Workshop on Digital Libraries (DLip 2001), Proc. of DEXA-Workshops, München, IEEE-Press, 2001, pp. 933-936

2. The Object Oriented Document Model

2.1. Theoretical Preparations

As OMNIS/2 sits on top of established digital library
systems it has to handle several different types of documents
which emerge from the underlying digital library systems.

Following this we have at first examined different ways
of how to categorize the documents. The most simple one
is to categorize the documents according to their source.
We call the documents from the underlying digital library
systems external documents and refer to the documents up-
loaded by the users, i.e. userdefined documents and annota-
tions (texts, graphics, etc.) as internal documents. Internal
documents are stored in an own relational database system
(the so called meta database, see section 3 for details).

The content of internal and external documents strongly
differs. Since OMNIS/2 does not use any harvesting the
content of external documents is not explicitly stored by
OMNIS/2 but remains in the underlying digital library sys-
tems and is only retrieved upon request. In our system we
only hold a persistent unique identifier for every external
document together with some meta data and linking infor-
mation. For local documents (where we store the content
locally of course) we can easily assure this, for external doc-
uments it is an requirment for the underlying digital library
systems so that they can be utilized for OMNIS/2. This fact
is especially important in the context of a posteriori cross
linking.

We can also categorize our documents according to
structure. Our design of the system as both, a metasys-
tem and a stand-alone multimedia database system, requires
that there are not only simple stand-alone documents from
various sources. Users must have the ability to compose
their own documents from various existing (i.e. external)
and user-defined (i.e. internal) documents. The document
model of OMNIS/2 therefore distinguishes two types of
documents, composites and atoms, thereby following the
Dexter Hypertext Model [4]. Composites either consist of
one or more atoms, one or more composites or both. A com-
posite can not exist for itself, but always has to contain at
least one atom. Consequently composites are internal docu-
ments and atoms are either local or external. This results in
a hierarchical document structure (see Fig. 1 for the BNF-
notion of the document structure and Fig. 2 for an example).
This hierarchy is actually a DAG (directed acyclic graph),
thus atoms and composites can be shared within the same
hierarchy and can occur in several different levels.

Atoms are of a single type or may even be complex if
they are accessible as a whole in an external system. In the
current system we consider text, images, audio, video and
external (i.e. the external documents) as document types.
The external documents are further divided into the vari-

<Document> ::= <Composite> | <Atom>
<Composite> ::= {<Composite> | <Atom>}+
<Atom> ::= internal Atom |

external Atom

Figure 1. Document hierarchy in BNF-notion

Composite Atom Atom

Composite

AtomComposite ...Atom ...

Figure 2. Example of a hierarchical document
structure

ous document types originating from the integrated external
digital library systems. This separation implies a strong en-
capsulation of document specific features in the document
types and motivates the implementation of this document
model in an object oriented way.

Another consideration comes from the fact that due to
the heterogenity of the underlying systems OMNIS/2 has to
find a way to access the different documents in a uniform
way.

Taking all these considerations into account we decided
that an object oriented design would follow exactly our
needs. In our model every document is seen as an object and
can exist for its own at runtime. Every object is identified by
a persistant unique identifier (UID). The document objects
have the ability to create themselves from the database on
request. In addition they carry all information about them-
selves (i.e. anchors, anntotations) and can display them-
selves for the presentation to the user. A second display
method enables a different presentation e.g. for an author-
ing tool. In the case of composite documents the display
method simply calls the display methods of its child docu-
ments.

This design enables us to use object-oriented program-
ming techniques although the underlying systems do not
offer object oriented features at all.

2.2. Implementation

A very suitable method to implement our document
model uses the composite design pattern (a structural de-
sign pattern) [3]. This design pattern enables us to rep-
resent part-whole hierarchies using objects and also pro-
vides a uniform interface to both composites and atoms (see

children

Composite

Component

Add(Component)
Remove(Component)
getChild(int)

display() *

Atom

display()

Core
program

display()

getChild(int)
Remove(Component)
Add(Component)

Figure 3. Composite design pattern (UML)

Fig. 3 for the design pattern in UML). It gains its flexibil-
ity through the component class which acts as a container.
This is especially important for the presentation of the doc-
uments with the display methods as it is easy for compos-
ite documents to simply call the display methods of their
child documents (regardlessly whether they are atoms or
composites) which form the document hierarchy. For OM-
NIS/2 we decided that the documents display themselves
in XML, which enables us to use modern techniques like
XSLT to process (annotate, link) the documents. The hier-
archical structure of XML in addition assists us to preserve
the hierarchical structure of our document model. The so-
lution overall combines several important aspects. It is slim
but nevertheless very powerful and reduces implementation
time drastically (this is also supported by our decision of us-
ing Java for the implementation). It hides heterogenity very
well in our case by using encapsulation and it is still easily
extensible.

3 Architecture of OMNIS/2

The presented object oriented document model is already
implemented and used in our meta system OMNIS/2. In the
following we briefly describe its architecture.

OMNIS/2 is separated basically into two layers (see
Fig. 4). We use established digital library systems as data
providers and treat them as large containers with powerful
query languages. We assume that the systems use XML to
make their data available to the outside world as it is com-
mon for modern systems nowadays. It would also be pos-
sible to access the digital library systems through a tight
coupling by using certain ports the systems provide, but we
do not discuss this approach any further in this paper. Our
system sits on top of the established digital library systems

as a meta system and acts as a service provider to the users,
who access OMNIS/2 through a common browser. We de-
cided to implement the meta system as a Java servlet in the
Apache webserver. The meta system stores and handles all
of the linking information and also the annotations, i.e. mul-
timedia documents that users can upload into the system, in
its own relational database. With referential integrity dan-
gling links are avoided within the OMNIS/2 system if ref-
erenced user-defined documents are removed. The system
itself is not only a meta system for digital library systems,
but it can also be used as a stand-alone multimedia digital
library system as all features are available as well for user-
defined documents.

4. Related Work

Over the years different ideas of object oriented docu-
ment models emerged. At this point we concentrate only on
a few of these proposals.

The Kahn/Wilensky Framework [5] is probably the most
similar proposal to our solution. It describes how to name,
identify or invoke digital objects (which can be any kind of
data-streams) in a system of distributed repositories. In our
solution we even go one step further and push functional-
ity into our objects that is very document specific (e.g. the
display() methods).

The SODA concept (Smart Objects, Dumb Archives) [6]
uses a very interesting encapsulation technique where tra-
ditional archive functionality is transferred to document ob-
jects. These objects are modeled as buckets and the buckets
provide all functionality for the actual documents. Buckets
are most similar to digital objects mentioned in [5]. For the
SODA concept the archives themselves offer only very sim-
plistic methods (put, delete, list, info, get). In OMNIS/2 we
also put functionality into our document objects. We have
to work however with smart archives which know about the
content of the documents. This motivated our encapsulation
strategy to hide this.

The Stanford Infobus [8] is a very general approach to-
wards interoperability for digital libraries. The Infobus it-
self enables participating systems to see documents as ob-
jects and to move them on the Infobus between different
digital library systems and clients. The design is very pow-
erful and goes beyond the scope of OMNIS/2 but requires
participating systems (in the case of OMNIS/2 the underly-
ing digital library systems or third parties) to implement the
specification, which we do not.

5. Summary

Heterogenity and interoperability are fundamental issues
in the field of digital library systems. We presented an ob-
ject oriented approach for a meta system for existing digital

further

 - GIS DL

e.g. - Video DL
Systems

 - Music DL

MultiMAP

Links

Faculty Library

multimedia

OMNIS/2 Meta System

XML

Servlet

Elektra

database

OPAC

Browser

...

Repository
Metadata
Anchors

system

Annotations
Local Documents

Application Server
OMNIS/2 Meta Database

system
digital journals simple catalog

HTTP JDBC

full text retrieval

Figure 4. Architecture of OMNIS/2

library systems, where we have to handle different formats
of documents and in addition want to enhance the existing
documents by links and annotations without changing the
source documents. We have also shown how to implement
our approach by using a design pattern which results in a
slim but still powerful solution. Additionally we presented
the meta system OMNIS/2 which provides the environment
in which the document model is successfully used.

References

[1] Bauer M.G., Specht G., Enhancing Digital Library
Documents by A Posteriori Cross Linking Using XSLT,
Proc. of the 5th European Conf. on Research and
Advanced Technology for Digital Libraries (ECDL
2001), Springer, LNCS, 2001.

[2] Dörr M., Haddouti H., Wiesener S., The German Na-
tional Bibliography 1601-1700: Digital Images in a
Cooperative Cataloging Project, Proc. of ADL’97,
Washington DC, IEEE Computer Society, 1997, pp.
50-55.

[3] Gamma E., Helm R., Johnson R., Vlissides J., Design
Patterns - Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, 1994.

[4] Halasz F., Schwartz M., The Dexter Hypertext Refer-
ence Model, Comm. of the ACM, 37(2), Feb. 1994,
pp. 30-39.

[5] Kahn R., Wilensky R., A Framework for Distributed
Digital Object Services, cnri.dlib/tn95-01, May 1995,
http://www.cnri.reston.va.us/cstr/arch/k-w.html

[6] Nelson M.L., Maly K., Zubair M., Stewart S.N.T.,
SODA: Smart Objects, Dumb Archives, Proc. of the
3rd Quropean Conf. on Research and Advanced Tech-
nology for Digital Libraries (ECDL 1999), Springer,
LNCS 1696, 1999, pp. 453-464.

[7] Specht G., Bauer M.G., OMNIS/2: A Multimedia
Meta System for existing Digital Libraries, Proc.
of the 4th European Conf. on Research and Ad-
vanced Technology for Digital Libraries (ECDL
2000), Springer, LNCS 1923, 2000, pp. 180-189.

[8] Stanford Digital Library Project:
http://diglib.stanford.edu/

[9] XSL Transformations (XSLT), Version 1.0,
http://www.w3.org/TR/xslt

