Journal: Systems Engineering, Vol. 8, No. 1, 2005

Wiley Periodicals, pp. 41-50

Regular Paper

Model Transfer Among
CASE Tools in Systems
Engineering

'EADS Deutschland GmbH, MT332, 81663 Munich, Germany
2EADS Deutschland GmbH, MT33, 81663 Munich, Germany

3University of Ulm, Department of Databases and Informationsystems, 89069 Ulm, Germany

Received 23 April 2004; Accepted 24 September 2004, after one or more revisions
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/sys.20018

ABSTRACT

Systems engineering as a core discipline of technical product development uses a variety of
different Computer-Aided Systems Engineering (CASE) tools. Very often the need arises for
data transfer between such tools. Currently, due to insulfficient interface formats, a labor-in-
tensive manual transfer of data is necessary. A step towards improving data exchange between
systems engineering tools along the process life cycle is the definition of standard interface
formats such as the application protocol (AP) framework of ISO Standards for the Exchange of
Product Data (STEP). The aim of this paper is to analyze and evaluate the implementations
of the Systems Engineering Data Representation and Exchange Standard (SEDRES/AP233)
information model with regard to supporting data exchange, to propose improvements for
the emerging modular AP233 ISO standard and to provide solutions for the observed prob-
lems. The solutions proposed in this paper were developed while designing, developing, and
using a STEP ISO 10303-SEDRES conformant import and export interface for the tools
Teamwork, Statemate, and the requirement management tool DOORS. The developed inter-
faces demonstrate that the SEDRES information model is an efficient medium for tool and
vendor independent transfer of systems engineering information. © 2004 Wiley Periodicals,
Inc. Syst Eng 8: 41-50, 2005

Key words: STEP; SEDRES; Computer-Aided Design; interoperability; data translation; stand-
ards

* Author to whom correspondence should be addressed (e-mail:
Roland.Eckert @EADS.com).

Systems Engineering, Vol. 8, No. 1, 2005
© 2004 Wiley Periodicals, Inc.

41

specht
Journal: Systems Engineering, Vol. 8, No. 1, 2005
Wiley Periodicals, pp. 41-50

42 ECKERT, MANSEL, AND SPECHT

1. INTRODUCTION

For the success of most complex engineering projects,
a close cooperation of all involved parties by data
exchange is crucial. Often, on large projects, a multi-
tool environment is used or a tool environment change
is required during the project life cycle. Often an auto-
mated data exchange is not possible, because the se-
mantics of the source and the target data schema are too
different or the data schemas are proprietary. Then only
manual data transfer is possible, but manual transfer of
data increases the likelihood of errors and wastes time.
It can take so long that users may decide it is not
worthwhile to propagate every change. Instead, they
may work with out-of-date, or incomplete data. There-
fore, within the Systems Engineering discipline across
the majority of industry sectors, there is an increased
requirement to improve data transfer across company,
international and environment boundaries.

STEP, ISO 10303 [ISO, 1994, Kemmerer, 1999] is
a comprehensive series of documents, which provide
industry with solutions to exchange and share the infor-
mation used to define a product throughout the entire
life cycle of the product. The STEP standard defines an
integrated information model, which supports multiple
views of product data for different applications. For
each application area covered by the standard, a stand-
ardized Application Protocol (Part 201-238) defines the
information required for a specific application. The
implementation methods for data exchange are also
defined, e.g., by ISO STEP 10303—Part 28 (XML),
Part 21 (ASCII) or SDAI

Earlier systems engineering standards such as [IEEE
1220, 1999] and [ANSI/EIA 632, 1998] are primarily
focused upon the development aspects of technical
systems. [[SO/IEC 15288, 2002] is focused on the
definition of a set of processes that can be tailored to
describe the actions of organizations and individuals at
any point throughout the systems life cycle. However,
a standard for the design data exchange for the systems
engineering domain is missing. This led to the proposal
of the STEP Systems Engineering Data Representation
and Exchange (SEDRES) project funded by the Infor-
mation Society Technology (IST) Framework IV of the
European Commission [SEDRES, 1999]. It resulted in
a proposal for improved data exchange and interoper-
ability of data between different computer-aided sys-
tems and software engineering tools. SEDRES/AP233
is in the process of becoming a Publicly Available
Specification (PAS) under ISO/AP233. A modular-
AP233 is currently under development in the frame-
work of ISO/SC4/WG3 and is being released
sequentially in a series of module sets. The SEDRES
model is an important predecessor to the AP233 stand-

ard and its implementations are sufficiently robust for
use on projects and for demonstration of economically
useful results.

The industrial motivation for supporting SEDRES
and standardizing and developing AP233 interfaces
(gateways) is that we envisage an environment facilitat-
ing the sharing of systems engineering information
between relevant stakeholders, regardless of the (cur-
rent) barriers arising from the lack of open semantic
standards and lack of interoperability of tools and PDM
environments. The individual systems engineering ac-
tivities are frequently supported by different tools and
tool environments, for instance, tools for requirements
analysis, or for functional analysis. Also, different tools
for the same activity are used by different partners, or
even by the same partners in different stages of product
development (for instance, for functional modelling
during concept development, versus full product defi-
nition) due to different needs for design fidelity or
analysis. However, the semantic-level integration be-
tween these tools is poor or nonexistent. AP233 aims to
be the solution to build up an engineering database for
an integrated development process.

The life cycle of a project, from system requirements
until retirement, disposal, and replacement, is often
much longer than the life span of tools or tool versions.
Because of the product liability, it is often necessary to
have the design models available even after the retire-
ment of such a product. A tool-neutral storage format
of the model is a solution to this archiving problem.

A large number of papers [e.g., Johnson, 2003a,
2003b; Herzog, 2004; Eckert and Mansel, 2004; Eckert
and Specht, 2004] describe the potential benefit of the
use of AP233 for data exchange in the systems engi-
neering process. However, these papers include only a
few concrete examples of data exchange examples
within one tool family (e.g., requirement management
tools). There are no published reports about data ex-
change results, the quality of the exchanged data, or
solutions for improving the results.

This paper reports the experiences of SEDRES-
based data exchange between the tools Statemate,
Teamwork, and DOORS, which are typically used in
the application field of electronic and software systems.
The reader gets an impression, why it is not a trivial job
to develop an interface in the systems engineering do-
main, and how SEDRES is being improved and has to
be improved further for the developing modular AP233.

The rest of the paper is organized as follows: Section
2 introduces the SEDRES information model. Section
3 describes SEDRES Application experiences. Section
4 discusses the SEDRES Information Model and its
implementation. Section 5 closes with a summary and
a conclusion.

2. MODEL TRANSFER PROBLEMS AND
THE SEDRES INFORMATION MODEL

The general problem of product data exchange between
tools is that data can get lost, can become interpreted
incorrectly, or can be displayed incomprehensibly dur-
ing automatic translation. If the user loses 1% of the
information without knowing which part, he has to
check the whole model. This additional time expendi-
ture dramatically reduces the benefit of an automated
data exchange. The data loss is a result of incorrect
semantic mapping, technical tool incompatibility, and
inability to display the received information in user-
readable form. These reasons reduce the value of the
received data significantly. Subtle and unnoticed trans-
mission errors can lead to expensive errors in the sys-
tems development. Therefore, the data exchange
between several tools evokes a number of challenges.
These challenges can be divided into problems caused
by differences in the semantics of the data models, into
heterogeneous schemas and interoperability.

Semantic interoperability presents a collection of
issues, all of which become more pronounced as indi-
vidual resources—each internally constructed in their
own semantically consistent fashion—have to be made
available through “gateways” such as the application
protocols from STEP.

Technical Interoperability, in many ways the most
straightforward aspect of maintaining interoperability,
incorporates communication, transport, storage, and
representation. This is the intended scope of standards
such as Z239.50 [239.50, 1992], Interlibrary Loan (ILL)
Protocol (ISO 10160/10161) [Jackson, 1997], and ISO
10303-28 (XML). A more detailed analysis of the in-
teroperability challenge can be found in Brownsword
[2004] and Morris [2004].

For overcoming the technical interoperability, SE-
DRES can be used as a semantic description of the data
that uses, for example, ISO 10303-21 (ASCII) and ISO
10303-28 (XML) as a way of implementation. Only the
application protocols provide the definition of informa-
tion relevant to an engineering domain, since they de-
fine semantics for an industrial domain rather than
being syntax-oriented or application-generic like XML,
SDAI, etc.

The main intention of SEDRES is to overcome the
semantic interoperability. The data model of AP233
supports, among others, the following “concepts”:

e System and subsystem views including hierar-
chies

e Requirements: text and model-based and require-
ments traceability

e System behavior and functional architecture

MODEL TRANSFER AMONG CASE TOOLS 43

¢ Functional decomposition, interfaces, and alloca-
tion

e Functional and physical flows; behavior models;
finite state machines

e System architecture and interface control

e Component decomposition, interfaces, and allo-
cation

e Parts libraries & product lines

If these concepts are not adequate, they can be ex-
tended by concepts from other application protocols,
like, e.g., Product Life Cycle Support (“AP239”). (In
future, the available application protocols will be
modularized and interchangeable.)

Data exchange between heterogeneous tools be-
comes a challenge due to the different semantics of the
data models of the tools. This is the consequence of
different concepts and database representations as a
result of their independent development by vendors. We
identify semantic heterogeneity, the lack of semantic
interoperability, and the lack of technical interoperabil-
ity as such challenges. We identify two types of seman-
tic heterogeneity.

Cognitive heterogeneity arises when two data mod-
els have different perceptions of real world facts. Using
the same names, i.e., homonyms, can conceal these
differences. For example, the field name “balance” may
represent the checking balance in the checking accounts
application. The same field name “balance” may also
represent the savings balance in the savings accounts
application. In this case, the term “balance” is a homo-
nym.

Naming heterogeneity refers to different names for
identical concepts of real world facts, also called syno-
nyms. As an example, consider how a student may be
referred to in a college data system. In the student
registration system, the student may be referred to by
the field name “student-number.” On the other hand, in
the majors and graduation system, the student may be
referred to by the field name “candidate-number.” The
terms “student-number” and “candidate-number” are
synonyms.

SEDRES offers a solution for the cognitive hetero-
geneity. The granularity of SEDRES is so high that it
was possible to find separate units of functions for
homonyms. SEDRES also offers solutions for naming
heterogeneity, called synonyms. The real world facts
are clearly defined in the documentation of the SE-
DRES publicly available specification PAS. Every in-
terface developer and CASE tool provider can access
this information and adapt his data model. The SE-
DRES data model delivers unambiguous definitions.

The intention of SEDRES is to facilitate faster and
cheaper development of translators. SEDRES acts not

44 ECKERT, MANSEL, AND SPECHT

only as a simple exchange standard. It also captures the
semantics of systems engineering information and sup-
ports exchange of overlapping data between different
classes of tools (i.e., tools for system requirements in
text and tools for modeling requirements and design).
It facilitates traceability and management of systems
engineering information across different tools. It opens
up the possibility of creating meaningful central data
repositories. It minimizes cost of data exchange, data
re-entry, and errors. It improves the quality of systems
engineering information exchange. SEDRES includes
product and process data to support the enerprise and is
easily partitioned.

It is only possible to map information (e.g., entities)
from the source to the target tool where an equal or
suitable structure, at least for a subset of the stored data,
is available. Data loss during a data transformation
occurs when information (e.g. entities) are mapped
from the source to the target tool, where no equal or
suitable structure is available. Examples are given in the
following schema of mapping classes:

Legend:

empty set

belongs to

logical not

logical for some (there exists)
logical for all

logical imply

l <wl mn By

b=T()
with
a={ay, a,, .., a,} € Schema Av D A
b={b,,b,,...,b,} € SchemaB v

If a pair of schemas (A, B) is considered, then a trans-
formation function 7 can be defined to capture how a
specific concept in schema A shall be represented in
schema B.

A schema may be defined with the intention of
implementing it in a particular database system, in
which case it is called a data model. An information
model or concept model is a schema that is independent
of any particular implementation.

Equality

® 0 A class for the mapping functions

whose application results in equivalent
semantics in the source and target
schema.

Yaec A:dbe B:a—b.

A is more expressive than B

n A class for the mapping function for
C * which at least one source element ex-

ists with no representation in the target
schema.

dae A: -dbe B:a—b.

A is less expressive than B

A class for the mapping function for
)
) which there exists, for some or all tar-

get elements, no representation in the
source schema.

dbe B:—dae A:a—b.

Aggregator

o0

JdaeAJa,eAa #a,:IbeB:
(a, = b) A (a, = b).

A class for the mapping function for
which some or all source elements are
merged into one representation in the
target schema.

Dispatcher

o~

1beB 1B,eB,B #B,:Jac A:
(@a—=b) A(a—b,).

A class for the mapping function for
which a single element of the source
schema is split into two or more repre-
sentations in the target schema.

3. SEDRES APPLICATION EXPERIENCE

EADS Deutschland GmbH has validated the SEDRES
interfaces for the system and software design tools
Statemate, Teamwork, the requirement management
tool DOORS, and the proprietary PDM tool Teamcenter
[Eckert and Johansson, 2003; Eckert and Mansel, 2004;
Eckert and Specht, 2004], which are typically used in
an engineering environment. The scenario is that differ-
ent companies use Statemate and Teamwork in different
life-cycle stages. DOORS is a common requirement
management tool.

The application context for the validation scenario
was an aircraft landing gear control specification. This
provides a relatively rich functional and behavioral
specification, which was exchanged between the tools.

Table I shows the effort required to develop an
import and export interface between the tools using

MODEL TRANSFER AMONG CASE TOOLS 45

Table 1. Effort for Developing SEDRES-Tool Import and Export Interfaces

Tool: Teamwork Statemate PDM StP DOORS
Tool Data ASCII
proprietary EXPRESS proprietary proprietary
Model Files
Mapping from PROSTEP
EDM PDMConnect ECCO
Tool Combitech Suit
Effort:
7.5 6 4 hours! 6 5
[man-month]

SEDRES/AP233. The effort for developing a universal
interface between several requirements management
tools and the AP233 modules for the textual-based
requirements and the property based requirements
module set [Johnson, 2003a], has been about 1 man-
week. This low cost is the result of building and supply-
ing an Interface Development Tool to interested
vendors [Eurostep, 2004].

Four different data sets were tested and are described
in the Table II. The first column describes the data
export from Statemate (St) and the second column
describes the data export from Teamwork (Tw), after
the data from Statemate was imported into Teamwork.
These metrics describe fundamental elements of the
used design data. After the data exchange between
different tools via AP233, these metrics are changed.
The “Function Instances” are nodes in a hierarchical
structure. The “Leaf Functions” are nodes that are no
longer subdivided and have no further child functions.
“Defined Functions” are data flows between the func-
tional nodes. The “Element Identifier” identifies ele-

Table II. Design Data Exchange Between Statemate
and Teamwork via AP233

Data Setl Set2 Set3 Set4

Tool export St>Tw> | St>Tw> | St>Tw> | St> Tw>

Instances 3374 5537|5527 8323{9033 14566|5376 8900

Function Instances |36 36 (61 61 |[114 114 |62 62

Leaf Functions 30 30 (51 51 |8 86 48 48

Defined Functions |188 161 {351 319 [670 667 |347 347

Element Identifier |[431 740 (652 1051(957 1736 (572 1113

ments under configuration control. The critical obser-
vation is that “Defined Functions” get lost. Both tools
use different concepts for “Element Identifier.” The
different number of instances is a result of the different
concepts of the gateways and the way data is stored in
the tools.

The results of the validation scenario provided im-
portant insight both into the strengths and weaknesses
of the data model and into several of the appropriate
technologies relevant to shared data environments. Im-
portant observations and results were obtained, which
can be organised into implementer perspectives and
engineer perspectives.

Primarily from an implementer perspective:

a. In all cases, the data model was found to be
implementable, the implementers being able to
map between tool concepts and corresponding
concepts within the data model. As such the
practical prototyping is a general validation of
the data model from an implementation perspec-
tive (Table I).

b. It was possible to produce a basic SEDRES-based
information server. This has revealed the need for
further work in the areas of item identification
and product data management.

c. Systems engineering information from the vali-
dation scenario (Table II) was successfully ex-
changed between tools (Table I). In the case of
the functional information, not only the functions
and their definitions were exchanged, but also the
flows and the graphic representation informa-
tion. This shows the practical capability of the
data model, the STEP technology of flat-file ex-
change (to be compared also with the data brows-
ing capability), and the feasibility of practical
tool interfaces.

d. As SEDRES-enabled design data exchange be-
comes a reality, it reveals the increasing chal-

46 ECKERT, MANSEL, AND SPECHT

lenge of configuration control. The current data
model reveals the limitations to which current
tools support comprehensive fine-grained data
management across sets of tools.

e. Onthe process side, the validation scenario shows
how traceability between data from different de-
sign tools can be built into the design and then
proven through crosschecks. This also illustrates
the possible use of the data model: the traceabil-
ity is captured by the design tool (the source) and
then recomputed by the traceability tool, hence
supporting the verification process.

f. In order to fully exploit the standards potential
use, SEDRES can be used to link data from
Statemate, Teamwork and DOORS to a process
management tool such as “Teamcenter” [Eckert
and Mansel, 2004; Eckert and Specht, 2004].
Such a tool would be responsible for managing
the design process, the design tools providing
design support and traceability tools providing
the verification facility.

As aresult of the validation scenario we have found
that the current AP233 data model is restricted in several
domains and has to be improved:

Graphical representation

No unique item identifier across a project

No concept of object order

Does not know from which CASE tool data was
delivered

Graphical Representation: The graphical repre-
sentation of the design objects in the tools Statemate
and Teamwork differs. In Statemate the basic symbols
are rectangles, while in Teamwork basic symbols are
circles. Because of this, the proportion of shapes, text,
workspace, etc. differs. The tools use different prede-
fined symbols that are unknown in other tools.

One feature of the interface is the possibility to
choose between the use of the graphical representation
of the original model or auto-generating a new Team-
work-specific graphical representation. With the gen-
eration of the Teamwork-specific graphical
representation it is possible to compensate the mis-
match of graphical representation between different
tools. Using the interface-generated graphical repre-
sentation, the orientation of symbols is optimized for
the presentation in Teamwork. On the other hand, the
symbols are not located in the same order on the screen
as in the originating tool. However, the hierarchy of the
design objects (symbols) is not affected.

One problem of going from Teamwork to Statemate
is that in Teamwork external data can start anywhere in

the empty plane, whereas in Statemate external data
requires external activities to define a start. At present
there is no automatic feature for generating a clearly
arranged graphical representation. After an import, en-
gineers have to make a time and cost-intensive rear-
rangement of the diagrams.

Statemate can represent concurrent states as a single
“and state.” On transfer to Teamwork Real Time, this
“and state” must be represented by a factorial expres-
sion into individual states. Layout and display of the
differences in the two tools is problematic.

No unique item identifier across a project: The
“Identity” had no focus in SEDRES. For example, in a
neutral systems engineering repository, merging the
data from different tools requires a unique identifier.
The use of the PDM Module could compensate for these
deficiencies, but this has to be evaluated. This, however,
will be problematical, because it will be difficult for the
target tools to interpret this identifier). A solution for
this could be a data dictionary [ISO/IEC 11179-6, 1997]
that maps the identifier for each individual CASE tool.

The way in which identification and versioning is
handled, and the mechanism for building hierarchies
(functional) in SEDRES [ISO, 2000] is unusual in the
STEP domain. The STEP/PDM Schema, and the reus-
able small STEP EXPRESS modules are in use in the
AP233 standard under development.

No concept of object order: It is not possible to
reliably maintain the order in which requirements and
other items are presented. In SEDRES the only ordering
of functions occurs in the “Functional Behavior” part
of the model. The current AP233 development has
released module sets for Test Based Requirements and
Property Based Requirements that enable reconstruc-
tion of the document structure when data is exchanged.
These modules are balloted and released with an avail-
able demo tool and a tool for economic interface devel-
opment. Seven requirements management tools have
existing interfaces to these AP233 module sets.

Does not know from which CASE tool data were
delivered: There are mismatches between tools and the
SEDRES data model where the capabilities of Systems
Engineering design tools differ (poorer or richer) to
those captured in the SEDRES data model. Most sig-
nificantly, many Systems Engineering tools do not sup-
port the concept of alternative solutions to a problem in
a manageable way.

Further general observations came from validation
scenarios where the tools Teamwork and Statement
were involved. Teamwork, in contrast to Statemate, has
no concept of ports. Therefore, it was necessary to
synthesise ports for mapped flows and bubbles to create
valid SEDRES data. SEDRES needs a port decomposi-
tion capability along with a need to get a fine grain view

of port-to-port connectivity at each associated level of
abstraction. A Port is a connection point on a system
assembly in the system assembly decomposition hier-
archy. The AP233 module set for Structure (under de-
velopment) supports these needs along with allocation
of interface requirements to the port connections and
the association of emergent properties at the port inter-
connection.

The Teamwork export interface from Conformics is
synthesizing data instances because a data instance is
not a concept in the Teamwork model. For each synthe-
sized data instance the Teamwork synthesizes a new
element identifier, but it may reference an existing
definition if an equal definition is available. Many flows
will be broken if one interface is synthesizing data
instances and others are not.

Teamwork does not have any concept of constant
values. All values have to be stored globally. The export
interface is always assigning the false value to this
attribute. An important experience from the interface
development was that all SEDRES interfaces have to
support I0_COMPOSITION_PORT (Fig. 1). Other-
wise, flows will get lost in some tools. Example: “a” is
a flow that ends in a bubble “C”. The flow is identified
as flow “a” to the children (a.i, a.j, a.k) within bubble
‘C’. The flows (a.i, a,j, a.k) will be broken if some interfaces
are using the entity [0_COMPOSITION_PORT and some
are not. For the described complex flows the SEDRES
entity IO_COMPOSITION_PORT must be used.

The data structures of the tools Statemate and Team-
work differ. In Statemate the data is organized in hier-
archical structures. In Teamwork the data are structured
in a relational schema. There are many mappings be-
tween these structures that are syntactically correct and
result in the transfer of the data from one structure to
another. However, many of these are semantically in-
correct, and cannot be fixed by AP233 and result in

MODEL TRANSFER AMONG CASE TOOLS 47

Figure 1. Port concept in Statemate.

information loss. For example, a student can visit zero
or more lessons. In the relational schema this is syntac-
tically represented by foreign key linkage between the
relations Student and Lesson on the ID attribute. In the
hierarchical schema, it is represented by the fact that a
Student record is the parent of a given Lesson record.
Here, the ID attribute in Lesson serves only to sequence
a list of lessons for each student. The syntactical trans-
lation from the hierarchical schema to the relational one
maps each Student record to an equivalent one in the
relation Student and each Lesson record to an equiva-
lent one in the relation Lesson. This is semantically
incorrect. ID in Lesson is not a valid foreign key to
reference equivalents in the relation Student.

After importing the data sets as AP233 conform
P21-files (Table IIT), we have exported them again. The
exported file was compared with the imported data and
the result was described in Table II1.

4. DISCUSSION OF THE SEDRES
INFORMATION MODEL AND ITS
IMPLEMENTATION

The complexity of the tool data model is a great obstacle
for an interface designer. Independent of implementa-

Table III. Data Exchange Results Described as Set Theory

’ Teamwork Statemate PDM StP DOORS
from
Teamwork | equality A<B A>B equality A>B
Statemate A>B equality A>B A>B A>B
PDM A<B A<B equality A<B A<B
StP equality A<B A>B equality A>B
DOORS A<B A<B A>B A<B equality

48 ECKERT, MANSEL, AND SPECHT

tion method, it must be carefully analyzed before an
interface is capable of valid, high quality data transfer.
In SEDRES the complexity is sorted out because it can
be used as a well-documented reference data model
and, as such, provides useful guidance for interface
development. It is very difficult to perform a mapping
from SEDRES to tool data models if the CASE tool
provider hides the proprietary data models. It is also
recommended to reconsider the established mapping
during the implementation as new experience is gained.
For an effective interface development it is necessary to
know the tool mechanisms, the semantics of the tool
and the supported processes.

The effort for developing a tool-AP233 interface
(Table I) can be significantly reduced with familiarity
of the involved data models before starting the develop-
ment. Once the data model of AP233 is understood, it
is a trivial job to develop new tool-AP233 interfaces.
For the tool vendors it would be a benefit to support
AP233 because of the significantly reduced costs for
developing such tool interfaces.

The graphical representation capability of SEDRES
data model [ISO, 2000] has to be improved. The abso-
lute position information of model objects has to be
replaced with relative position information. This is a
topic of further development, e.g., in the course of the
current AP233 development activities in
ISO/SC4/WG3. (Another problem could be that the
interfaces are not mature enough for the graphical rep-
resentation topic.) If we look at tools for designing
printed circuit boards, they use a sophisticated algo-
rithm for improving the graphical representation. The
results of this algorithm are much better than a human
being can attain. The third, but unrealistic solution, is
that all tools support the same graphical representation,
as suggested in the UML 2.0 or Systems Modelling
Language (SysML, www.sysml.org) initiative. Then all
tools support an agreed set of symbols and it is no longer
necessary to define mappings between different sym-
bols like circles (Teamwork) and rectangular
(Statemate). SysML is being developed in conjunction
with AP-233 with the goal that SysML graphical mod-
els and the associated information in the model reposi-
tory can be exchanged via AP-233 standard. Version 1.0
of SysML is expected to be adopted by the OMG with
tool implementations to be introduced beginning in
2005.

The opinion of the authors is that the graphical
representation is the most critical point. A model with
a layout similar to that defined by a source tool is much
more readable than any model layout synthesised by a
low-level algorithm. This is a critical issue because
systems engineers today use graphical representations

of a system to communicate its functional and data
requirements.

Atpresent, no available tool can perform all the tasks
needed for a full product life cycle. A close cooperation
between different tools from different tool providers is
vital. Because of the duration of development and time
in service, no tool supplier is able to provide support
over the years. So the openness and supported interface
standards will be a purchasing factor for the industry.
Large projects are usually conservative in changing the
adopted tools and retraining teams of engineers because
of the cost and risk involved.

We expect, in general, that the tool vendors will
implement the interfaces and not the industry using the
tool. For industry the interoperability of tools and wor-
thiness and trustfulness of the export results will be a
buying argument. Tool suppliers should take an active
role in the development of the emerging AP233 to
enrich the standard with their own extensive experi-
ences.

In a sequential file-based data exchange between
different tools, data loss cannot be precluded. It is not
the fault of the neutral data model; it is because of the
different capabilities of the design tools. This dramati-
cally reduces the benefits of an automated interface.
The data export from one tool to another tool is proc-
essed in several steps. Atevery step errors can occur that
should be documented, e.g., semantic errors, syntax
errors, broken business rules. A solution could be a
standardised and machine-interpretable transformation
or mapping report [Eckert and Mansel, 2004]. The
benefits for such a report are:

e Visibility to the end user of the effects of the data
exchange

e Worthiness and confidence of the delivered data

e Documentation of data loss

e List of delivered data

e Minimized error propagation

e History of data

e Constraint violations

e Handshaking function for data integration

The transformation report traces data exchange ac-
tions and is a precondition for data integration strategy
to improve quality of exchanged information. The de-
scribed report is not tool-specific, and therefore it is
suggested that it be a part of the framework of ISO
standards, e.g., “‘Standard for the Exchange of product
model data” (STEP ISO 10303). The structure of the
transformation report is generic, so it is easy to use the
report without any adaptation for all kinds of data
transformations.

The transformation report is not fixed by a special
encoding, but is suitable to use a standard encoding like,
e.g., XML (ISO 10303-28) or ASCII (ISO 10303-21).

Subsequent data exchange between the tools has
limitations. One further exploitation, which remains to
be investigated, is the use of AP233 as a neutral systems
engineering repository [Eckert, 2002]. Application Pro-
tocols are also suitable for storing data in a neutral
format. The tools could query the database to retrieve
relevant information instead of the whole data of the
source tool. If it is possible to merge the information
from different tools into such a repository, new methods
of consistency checks, syntactical correctness, and
completeness checks of the designed model are possi-
ble. An open neutral repository based on AP233 offers
a solution for the long-term data storage challenge.

5. SUMMARY AND CONCLUSION

The entire software community is well aware that the
problems of interoperability are many and are not likely
to disappear quickly. AP233, following the pioneering
efforts of the SEDRES contracts, is one more step in the
direction of overcoming the difficulties.

SEDRES provides a solid base for Systems Engi-
neering data exchange and interface implementation.
The interfaces and information transfers demonstrated
with SEDRES that the emerging AP233 standard can
be an efficient medium for tool and vendor independent
transfer of systems engineering information provided
that the defects reported here are addressed in the
emerging AP233 standard. Many practical research re-
sults are available from the current SEDRES model that
should be used in the development of the emerging
AP233. If the defects are resolved in the AP233 stand-
ard, a new century of Systems Engineering will begin.

ACKNOWLEDGMENTS

The authors thank all members of the SEDRES-2 pro-
ject for their inspired work and for making possible the
evaluation of the following interfaces:

W. Scott, University South Australia, AP233—
DOORS Import Interface, developed during
SEDM (System Engineering design Methodolo-
gies).

M. Giblin, BAE SYSTEMS, AP233—Statemate In-
terface, developed during SEDRES-2 project.

Dr. G. Johansson, Conformics AB, AP233—Team-
work Interface, developed during SEDRES-2
project for EADS Deutschland GmbH.

MODEL TRANSFER AMONG CASE TOOLS 49

REFERENCES

ANSI/EIA 632, Processes for engineering a system, EIA,
Arlington, VA, 1998.

ANSI/NISO Z39.50-1992 (version 2), Information Retrieval
Service and Protocol: American National Standard, Infor-
mation Retrieval Application Service Definition and Pro-
tocol Specification for Open Systems Interconnection,
International Standardization Organization, Geneva,
Switzerland, 1992.

L.L. Brownsword.; D. Carney, D. Fisher; G. Lewis, C. Mey-
ers, E. Morris, P. Place, J. Smith, and L. Wrage, Current
perspectives on interoperability, CMU/SEI-2004-TR-
009, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 2004.

R. Eckert, Call of EUC EOL.FP6.2002, NeSED, http://eoi.cor-
dis.lu/dsp_details.cfm?ID=36203, June 6, 2002.

R. Eckert and G. Johansson, Experiences from the use and
development of ISO 10303-AP 233 interfaces in the sys-
tems engineering domain, 9, Int Conf Concurrent Enter-
prises, Espo, Finland, 2003, pp. 501-508.

R. Eckert and W. Mansel, Integrating system engineering into
PDM by AP233, International Council on Systems Engi-
neering, Toulouse, France, 2004.

R. Eckert and G. Specht, Transformation Report: The missing
Standard for Data Exchange, 6th NASA-ESA Workshop
on Product Data Exchange, Friedrichshafen, Germany,
2004.

Eurostep, http://ap233.eurostep.com/software.htm, June 5,
2004.

E. Herzog, An approach to systems engineering tool data
representation and exchange, Linkdping Studies in Sci-
ence and Technology, Dissertation No. 867, Linkoping,
Sweden, 2004.

IEEE 1220, IEEE standard for application and management
of the systems engineering process, IEEE, New York,
1999.

1SO, ISO 10303-1, Industrial automation systems and inte-
gration—Product Data Representation and Exchange—
Part 1: Overview and fundamental principles,
International Standardization Organization, Geneva,
Switzerland, 1994.

ISO, ISO WD5.1 10303-233, Industrial automation systems
and integration: Product data representation and ex-
change: System engineering and design, International
Standardization Organization, Geneva, Switzerland,
2000.

ISO/IEC 11179-6, Informationstechnik—Festlegung und
Normung von Datenelementen—Teil 6: Registrierung
von Datenelementen, International Standardization Or-
ganization/International Electrotechnical Commission,
Geneva, Switzerland, 1997.

ISO/IEC 15288, Systems engineering—system life cycle
processes, International Standardization Organization/In-
ternational Electrotechnical Commission, Geneva, Swit-
zerland, 2002, 7 pages.

M. Jackson, The application of the ILL Protocol to existing
ILL systems, 63rd IFLA Gen Conf, Copenhagen, Den-
mark, September 2, 1997.

50

ECKERT, MANSEL, AND SPECHT

J.EE. Johnson, The future Systems Engineering Data Ex- E. Morris, L. Levine, C. Meyers, P. Place, and D. Plakosh,
change standard AP-233; Sharing the results of the SE- System of Systems Interoperability (SOSI): Final report,
DRES Project, INCOSE, 1999. CMU/SEI-2004-TR-004, ESC-TR-2004-004, Software

J.EE. Johnson, How does AP233 support a systems engineer- Engineering Institute, Carnegie Mellon University, Pitts-
ing process (e.g. EIA-632)?, BAE SYSTEMS, INCOSE burgh, PA, 2004.

2003, Washington, DC, 2003a. SEDRES, Systems Engineering Data Representation and Ex-

J.E.E. Johnson, AP233 requirements data exchange—lessons change Standardisation-2, ESPRIT 20496 and IST-1999-
learned, Presentation, ISO SC4/WG3, 22,0ctober 2003b. 11953; ISO 10303 AP233, Brussels, Belgium, 1999.

S. Kemmerer (Editor), STEP—The Grand Experience, NIST

Special Publication 939, Gaithersburg, MD, 1999.

Mr. Roland Eckert received his master degree in computer science at the Technical University Ilmenau,
Germany. He started his career at EADS in 1999 as software engineer in an avionics software development
project. Further he worked in the EADS internal product data management project, contributed as project
member to SEDRES-2 and is currently involved in a four-nation industrial process improvement project.
He is German DIN representative for ISO activities.

Dr. Wolfgang Mansel obtained his master’s degree and Ph.D. in physics at the Technical University of
Miinchen. After several years in physics research, in 1985 he joined the aerospace industry and has been
involved since then in the management of avionics software development projects as well as software
technology projects with respect to software engineering, process improvement projects, and advanced
information technology and product data management. He was the Project Manager of SEDRES-2 and
now manages the enhanced process & toolset project. He holds the position of Software Technology Chief
Engineer.

Professor Dr. Giinther Specht is professor at the University of Ulm in the Department of Databases and
Information Systems. He earned his Ph.D. in 1992 and his habilitation (Dr. habil.) in 1998, both at TU
Miinchen. He held his first professorship at the TU Miinchen, then joined TU Ilmenau, and for 3 years
has been at the University of Ulm. Research stays led him to TU Helsinki, Finland and IBM Almaden,
California. His main interests include multimedia databases, mobile information systems, XML, ontolo-
gies, and systems engineering.

