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Abstract

In recent years, online knowledge curation on the internet has been lifted to
a new level—online mass-collaboration. Knowledge bases such as Wikipedia
and Wikidata are curated by huge communities and produce a vast amount of
knowledge. Therefore, the prevailing challenge is to maintain a homogeneous
structure in those knowledge bases to ensure efficient search capabilities, allow
automated reasoning, and provide semantically linkable knowledge for the
Linked Open Data cloud. In this thesis we propose the SnoopyConcept which
leverages recommender systems to support the user to homogenize knowledge
already during the insertion process. The recommendations furthermore aim
at increasing the quality and quantity of stored knowledge in collaborative
information systems. In addition, we implement the universal SnoopyConcept
in several domains and systems to evaluate and assess the recommender system
based approach.
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and Niki who never got tired of nudging me about my thesis — your relentless
persistence paid off.

I also want to thank my advisor Günther Specht for giving me the opportunity
of writing this thesis, all the resources, and his support the whole time, even
after I left DBIS after eight instructive years.

A special “thank you” goes to my whole family, especially my parents who have
never forced me to do anything and have always supported me, no matter how
ridiculous my idea was.

Thanks to all the amazing members and students at the Institute of Computer
Science Innsbruck who taught me a lot, even outside the world of science.

This work was only possible due to the huge amount of available Open
Source tools. Only Open Source tools were used to build and evaluate the
SnoopyConcept and write all related publications and this thesis.

Thanks a lot to all the Open Source contributors.

This work was partially funded by the Austrian Research Promotion Agency
(FFG) and the Nachwuchsförderung of the University of Innsbruck.





Eidesstattliche Erklärung
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CHAPTER 1

Introduction

Scientia potentia est1 has emphasized the importance of knowledge for cen-
turies. Especially since the beginning of the information age [37], the economy
has been based on information computerization and thus, the access to knowl-
edge has become crucial. Information systems or knowledge bases are used
to store knowledge and provide users access to knowledge. In the past, infor-
mation systems were solely used by specialists and usually were maintained
by a small group of people. This has drastically changed with the rise of the
internet and the web 2.0 movement which has lifted curation of knowledge to
a new level—online mass-collaboration.

In mass-collaborative information system, such as Wikipedia2, thousands of
people with different backgrounds collaborate to curate knowledge. Those
platforms usually do not restrict the user to use a predefined structure to store
and structure information. The shortcoming of this structure-less paradigm
is its limited search capability. Consider a complex query such as “Which
Austrian cities have more than 10.000 inhabitants and have a female mayor
who has a doctoral degree?”. It is not possible to answer such a query through
full-text search which is provided by most wiki-systems. Weikum et al. [171]

1Knowledge is power, https://en.wikipedia.org/w/index.php?title=Scientia_

potentia_est&oldid=784909874 (revision 10 June 2017 )

2http://www.wikipedia.org, accessed 2017-07-17

https://en.wikipedia.org/w/index.php?title=Scientia_potentia_est&oldid=784909874
https://en.wikipedia.org/w/index.php?title=Scientia_potentia_est&oldid=784909874
http://www.wikipedia.org
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observed that modern information systems have to be able to support both
structured and unstructured data to combine the advantages of both worlds
and to be able to answer such questions. One possible solution is the usage
of semi-structured information systems (cf. Section 2.1.3) which allows for
defining a structure but do not require a predefined schema. For example
tagging systems, fact based knowledge bases, document-oriented databases or
XML files provide the possibility to store any arbitrary data in a structured
way without adhering to a predefined schema.

The flexibility of the previously described schemaless semi-structured storage
in combination with collaborative data curation leads to a massive problem.
Every single user has her own view of structuring knowledge and information
and uses her own terminology. Furnas et al. [59] already showed in the 80s
that two people would spontaneously choose the same word for an object with
a probability of less than 20%. This suggests that collaboratively built knowl-
edge based on the semi-structured model shows a very high proliferation of
structures, schemata and vocabulary. The resulting heterogeneous schema im-
pedes the search facilities as a common schema is essential to answer complex
structured queries. E.g., a user who searches for numberOfStudents cannot find
information which was stored using the properties students, numberStudents
or num students. Therefore, especially in collaborative knowledge systems, the
creation of a common schema without restricting the domain, type or amount
of information is desired. Wikipedia is fighting such a heterogeneity by intro-
ducing collaboratively created templates and for the community an extended
supervision by the committed community. The task of creating structure in
Wikipedia is very demanding task for the community as shown by Boulain et
al. [26]. The authors analyzed the edits in Wikipedia and identified that only
35% of all edits within Wikipedia are related to content, whereas all other
edits aim at enhancing the structure within the Wikipedia knowledge base.

In this thesis, we propose a self-learning system which leverages recommender
systems to guide the user to a homogeneous schema without restricting her
in her way of structuring information. The recommendations are based on
already stored information in the system and aim to prevent synonyms or
different structures which would impede the search capabilities.

Another severe problem in collaboratively built knowledge bases is the barrier
for new users to insert information to knowledge bases. In Wikipedia, most
of the content is created by a very small group of users [94]. Furthermore,
articles have to conform to many policies and other regulations which increase
the barrier for contributions by newcomers [133, 162]. But not only in public
knowledge bases, moreover and especially in enterprise knowledge bases or
wikis, the poor adoption rate of content constitutes a major problem. Besides
social group phenomena, especially the high costs for users to contribute and
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1.2 Contributions and Published Work

manage wikis (e.g. wiki syntax, complex user interfaces, etc.) is the main
reason for a bad contribution rate [97].

Therefore, we introduce the SnoopyConcept in this thesis which aims at in-
corporating the user already during the insertion process. An intuitive and
guided process facilitated by recommendations, supports the user to curate
semi-structured knowledge with a common and normalized schema. The goal
of this assistance is to lower the entry barrier and increase the amount of
stored knowledge in the information system.

1.1 Aims and Research Questions

In the introduction we mentioned several challenges in the area of collabora-
tive information systems which are tackled by the SnoopyConcept we present
in this thesis. The SnoopyConcept aims at incorporating the user already
during the insertion process to homogenize the structure of stored knowledge
and thus, improving the search capabilities. Therefore, we propose to leverage
recommender systems to recommend highly suitable structures based on al-
ready stored knowledge in the system. The overall goal of providing guidance
and recommendation to the user, is to increase the quality and quantity of
knowledge stored in the information system. The aims can be summarized by
the following research questions which are addressed in this thesis:

• How can recommender systems empower collaborative information sys-
tems to become more structured without losing their flexibility?

• How can direct user communication during the insertion process be fa-
cilitated by recommender systems to increase the quality of information?

• How can automated user guidance by a recommendation system result
in an increased quantity of information?

1.2 Contributions and Published Work

This thesis mainly covers contributions that have been made and published
between 2009 and 2014.

The main contribution is the SnoopyConcept which tackles the previously de-
scribed research questions by providing smart recommendations already during

3
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the insertion process. This approach is the first work which facilitates a recom-
mender system to prevent schema proliferation and at the same time increase
the amount of knowledge which is stored to the information system. The core
idea of the SnoopyConcept was firstly published in 2010 at the ACM Confer-
ence on Hypertext and Hypermedia [61]. Subsequently, we identified differ-
ent types of recommendations which were implemented in a fully functional
prototype called SnoopyDB. At the ACM Recommender System Conference
2010, the most widely known conference on Recommender Systems, a more
detailed description about the underlying algorithms was published [182]. At
the CTS conference 2011 (International Conference on Collaboration Tech-
nologies and Systems), the paper “The Snoopy Concept: Fighting Hetero-
geneity in Semistructured and Collaborative Information Systems by using
Recommendations” [60] was nominated for the best paper award. Based on
this paper, an extended version was published in the Journal on Future Gen-
eration Computer Systems (impact factor 1.978) [64] and an extended survey
about approaches tackling structure heterogeneity was published as a book
chapter with the title “Dealing with Structure Heterogeneity in Semantic Col-
laborative Environments” in the book “Collaboration and the Semantic Web:
Social Networks, Knowledge Networks and Knowledge Resources” [183]. We
furthermore developed different models to implement the storage system and
recommendation engine of the SnoopyConcept which are presented and dis-
cussed in Chapter 4. In this chapter, we also propose a scaling approach
to cope with very big datasets. Besides the SnoopyConcept reference imple-
mentation SnoopyDB, we evaluated the SnoopyConcept in several other do-
main. For this purpose, we developed several prototypes which are described
in detail in Chapter 5. The SnoppyTagging approach which implemented
the SnoopyConcept and furthermore, extended the algorithm by incorporat-
ing user preferences, was published at the World Wide Web Conference 2012
(WWW2012) [63]. The developed personal information system hash5 incor-
porates the SnoopyConcept and additionally, recommends structures, tags,
and values based on the full-text in PIM entries. The recommendation of
Wikipedia Infobox structures using the SnoopyConcept approach was pub-
lished in 2011 at the ACM Conference on Hypertext and Hypermedia [103].
Still in 2016 the SnoopyConcept approach was relevant and we proposed al-
gorithms based on the SnoopyConcept to recommend structures in Wikidata
at Wikipedia’s conference OpenSym 2016 [184]. The following list contains all
my publications related to the SnoopyConcept.

• W. Gassler, E. Zangerle, M. Tschuggnall, and G. Specht. SnoopyDB:
Narrowing the Gap between Structured and Unstructured Information
using Recommendations. In HT’10, Proceedings of the 21st ACM Con-
ference on Hypertext and Hypermedia, Toronto, Ontario, Canada, June
13-16, 2010, pages 271–272, 2010
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• E. Zangerle, W. Gassler, and G. Specht. Recommending Structure in
Collaborative Semistructured Information Systems. In Proceedings of
the fourth ACM Conference on Recommender Systems, pages 261–264,
Barcelona, Spain. ACM, 2010

• W. Gassler and E. Zangerle. Recommendation-Based Evolvement of Dy-
namic Schemata in Semistructured Information Systems. In Proceedings
of the 22nd Workshop Grundlagen von Datenbanken (GvDB 2010), Bad
Helmstedt, Germany. CEUR-WS.org, 2010

• W. Gassler, Zangerle, and G. Specht. The Snoopy Concept: Fight-
ing Heterogeneity in Semistructured and Collaborative Information Sys-
tems by using Recommendations. In The 2011 International Conference
on Collaboration Technologies and Systems (CTS 2011), pages 61–68,
Philadelphia, PE, 2011

• A. Larcher, E. Zangerle, W. Gassler, and G. Specht. Key Recommenda-
tions for Infoboxes in Wikipedia. Website of the 22nd ACM Conference
on Hypertext and Hypermedia, 2011. Poster Presentation

• E. Zangerle and W. Gassler. Dealing with Structure Heterogeneity in Se-
mantic Collaborative Environments. In Collaboration and the Semantic
Web: Social Networks, Knowledge Networks and Knowledge Resources.
IGI Publishers, Hershey, Pennsylvania (USA), 2012

• W. Gassler, E. Zangerle, M. Bürgler, and G. Specht. SnoopyTag-
ging: Recommending Contextualized Tags to Increase the Quality and
Quantity of Meta-information. In Proceedings of the 21st International
Conference Companion on World Wide Web, WWW ’12 Companion,
pages 511–512, Lyon, France. ACM, 2012

• W. Gassler, E. Zangerle, and G. Specht. Guided Curation of Semistruc-
tured Data in Collaboratively-built Knowledge Bases. Journal on Future
Generation Computer Systems, 31:111–119, May 2014. impact factor
1.978.

• E. Zangerle, W. Gassler, M. Pichl, S. Steinhauser, and G. Specht. An
Empirical Evaluation of Property Recommender Systems for Wikidata
and Collaborative Knowledge Bases. In Proceedings of the 12th Interna-
tional Symposium on Open Collaboration, OpenSym 2016, Berlin, Ger-
many, August 17-19, 2016, 18:1–18:8. ACM, 2016
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Besides the thesis related publications, also contributions have been made in
the field of databases [65], main memory graph storages [22], Twitter hashtag
recommendations [186, 187, 188] and music recommendations [185, 189]. The
following list contains all other publications which were made throughout the
course of my PhD studies:

• R. Binna, W. Gassler, E. Zangerle, D. Pacher, and G. Specht. Spider-
Store: Exploiting Main Memory for Efficient RDF Graph Representation
and Fast Querying. In Proceedings of the 1st International Workshop on
Semantic Data Management (SemData) at the 36th International Con-
ference on Very Large Data Bases (VLDB 2010), Singapore. CEUR-
WS.org, 2010

• W. Gassler, E. Zangerle, and G. Specht, editors. Proceedings of the 23rd
GI-Workshop ”Grundlagen von Datenbanken 2011”, Obergurgl, Austria,
May 31 - June 03, 2011, volume 733 of CEUR Workshop Proceedings,
2011. CEUR-WS.org

• R. Binna, W. Gassler, E. Zangerle, D. Pacher, and G. Specht. Spider-
Store: A Native Main Memory Approach for Graph Storage. In Proceed-
ings of the 23nd Workshop Grundlagen von Datenbanken (GvDB 2011),
Obergurgl, Austria. CEUR-WS.org, ISSN 1613-0073, Vol. 733, 2011

• E. Zangerle, W. Gassler, and G. Specht. Recommending #-tags in
Twitter. In Proceedings of the Workshop on Semantic Adaptive Social
Web 2011 in connection with the 19th International Conference on User
Modeling, Adaptation and Personalization, UMAP 2011, pages 67–78,
Gerona, Spain. CEUR-WS.org, 2011

• E. Zangerle, W. Gassler, and G. Specht. Using Tag Recommendations
to Homogenize Folksonomies in Microblogging Environments. In So-
cial Informatics: Third International Conference, SocInfo 2011, Singa-
pore, October 6-8, 2011. Proceedings. Springer Berlin Heidelberg, 2011,
pages 113–126

• E. Zangerle, W. Gassler, and G. Specht. Exploiting Twitter’s Collective
Knowledge for Music Recommendations. In Proceedings, 2nd Workshop
on Making Sense of Microposts (#MSM2012): Big things come in small
packages, Lyon, France, 16 April 2012, pages 14–17, 2012

• E. Zangerle, W. Gassler, and G. Specht. On the impact of text similarity
functions on hashtag recommendations in microblogging environments.
English. Social Network Analysis and Mining, 3(4):889–898, 2013
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• E. Zangerle, M. Pichl, W. Gassler, and G. Specht. #nowplaying Music
Dataset: Extracting Listening Behavior from Twitter. In Proceedings
of the 1st ACM International Workshop on Internet-Scale Multimedia
Management, ISMM ’14, pages 21–26, Orlando, Florida, USA. ACM,
June 2014

1.3 Thesis Outline

This dissertation is structured as follows. Chapter 2 features an introduction
to information systems, Wikis and recommender systems in the area of in-
formation systems. The chapter also covers database models that are used
throughout the course of this thesis. In Chapter 3, we present the Snoopy-
Concept and the key idea to use recommender systems to increase the quality
and quantity of knowledge in information systems. Chapter 4 presents the
implementation of the SnoopyConcept with regard to used storage models
and optimizations of the proposed recommendation algorithms. In Chapter 5,
we describe our reference implementation of the SnoopyConcept and present
several other showcases which incorporate the SnoopyConcept in different do-
mains. Chapter 6 presents and discusses the results of the conducted offline
and online experiments which evaluate the SnoopyConcept algorithms. Chap-
ter 7 concludes this thesis.
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CHAPTER 2

Background & Related Work

The SnoopyConcept aims at leveraging recommender systems to support col-
laborative knowledge curation. Therefore, we focus in this chapter on founda-
tions and related work in the area of collaborative knowledge curation, more
specifically wiki systems in Section 2.2. Furthermore, we introduce recom-
mender systems in Section 2.3 and their application in the field of information
systems and knowledge bases in Section 2.4. The last section is dedicated
to database models that are used as an underlying basis for all presented
SnoopyConcept storage approaches and concepts.

2.1 Information Representation & Structure

Knowledge is always structured but can be represented in different ways. We
distinguish between three main classes of information systems depending on
the knowledge representation and the strictness of structure in the system. In
the following sections the three classes are described in detail.



Chapter 2 Background & Related Work

2.1.1 Strictly Structured Information Systems

Strictly structured information systems are based on the relational model and
have been used since the invent of the digital information processing. They
provide a fixed data schema which is developed by an administrator or devel-
oper in advance. The end user has to adapt the information and knowledge
to the predefined schema to store any data to the system. A common exam-
ple is that of classical bank applications which provide the possibility to store
bank transactions. Each transaction has to adhere to the predefined schema.
Additional concepts such as normal forms or integrity constraints which are
very common in the world of relational data further restrict the data. These
restrictions and constraints are the key features of relational databases and
strictly structured information systems as the quality of the stored data is very
high and verified by additionally defined constraints which are guaranteed by
the database system. Due these properties the relational model is best suited
for applications which are used in a fixed domain. As most modern business
applications are limited to one single domain, the relational model can be used
to store all data in very sufficient way. Modern relational databases are able to
handle hundreds of thousands transactions per second [93] where each entry is
strictly structured and adhere to a predefined schema. If an application needs
more flexibility regarding the schema, as not all data points adhere to the
same structure, the relational model run up against its limit and other models
are needed to process heterogeneous structured data in an efficient way. Those
models are discussed in the two following sections.

2.1.2 Unstructured Information Systems—Wikis

With the advent of the Web 2.0 which has transformed the content creation
from the author to the website users, new storage models have been intro-
duced. The key feature of these models are the handling of loose structured
or non structured information and knowledge. One of the most successful
concept are the concept of Wikis which allow to store any type or structure
of knowledge. Most wikis realize this feature by just offering a simple text
field to insert any textual information to a page. Additional features such
as interlinking or infoboxes provide the possibility to the user to enter fur-
ther structural information to the simple text. The most known example is
Wikipedia which have become the world largest knowledge base [110] by using
the flexible paradigm. An overview about Wikis, their features, used technolo-
gies and their drawbacks can be found in Section 2.2. A combination of the
strictly structured approach and the unstructured wiki approach is discussed
in the following section.

10
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2.1.3 Semi-structured Data

The semi-structured data model incorporates both the paradigm of structured
and unstructured storage. The need for such a new storage paradigm already
arose in the 90s [147, 32]. Back then it became clear that it would be increas-
ingly important to be able to store mostly unstructured data while at the same
time providing efficient and structured querying facilities. With the advent of
the World Wide Web, which currently forms the largest unstructured knowl-
edge base, it became obvious that such data cannot be fitted into a predefined
schema in order to be able to query it. The application of traditional retrieval
and extraction techniques to query such unstructured data reached unsatisfac-
tory results as the formulation of structured and precise queries (e.g. “Which
Austrian cities have more than 10.000 inhabitants and have a female mayor
who has a doctoral degree?”) was not possible due to the lack of structure.
Thus, the semi-structured data model combines both the structured and the
unstructured data model and provides a highly flexible way of storing data as
it supports the storage of information in a structured way without the need
of specifying a predefined schema.

This approach has also been incorporated by several wiki systems. For ex-
ample, the Semantic Mediawiki [100] allows to specify semantic information
in a semi-structured way (cf. Section 2.2). Also Wikipedia has introduced a
new project in 2012 which is called Wikidata (cf. Section 2.2.3) and offers the
insertion of semantic data which are computer-processable in contrast to the
fulltext-format of classical articles on Wikipedia.

Throughout the last two decades, various models for semi-structured data have
been developed, like e.g. [4, 38]. Currently, the most popular example of the
semi-structured data model is RDF (Resource Description Framework, W3C
recommendation1) [95]. RDF basically models knowledge as triples consisting
of a subject, a predicate and an object. The subject (also called resource) is
described by multiple pairs of predicates and according objects. The resource
is uniquely identified by a URI (Uniform Resource Identifier2). Important
facts about the University of Innsbruck within a knowledge base can be stored
using triples as e.g. in Listing 2.1.

Listing 2.1: Triples

1 <http :// dbpedia.org /../ University_Innsbruck ><numberOfStudents ><26626>

2 <http :// dbpedia.org /../ University_Innsbruck ><established ><1669>

1http://www.w3.org/RDF/, accessed 2017-07-17

2http://www.w3.org/TR/uri-clarification/, accessed 2017-07-17
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These predicate-object pairs—in combination with the article URI itself (the
resource, in this case University Innsbruck)—constitute triples. The subjects,
predicates and objects are not restricted in any way and can therefore hold any
information while at the same time providing structure due to the triple con-
cept as all objects are given context by the according predicates. The triples
are machine-readable and processable, thus provide the base for structured ac-
cess and complex structured queries. In order to query such semi-structured
RDF knowledge bases, the standard query language is SPARQL (SPARQL
Protocol and RDF Query Language) [135].

As RDF is very flexible and is able to link to even external resources by
specifying an external URI as the object of a triple, the interlinking between
knowledge bases has become very popular. Sir Tim Berners-Lee has coined
the term Linked Open Data (LOD) [23] for such linked and semi-structured
data (cf. Section 2.2.3). Further information about knowledge bases can also
be found in Section 2.2.3.

It is important to note that within semi-structured systems, users can arbi-
trarily choose the predicate used for storing information. This fact is very
beneficial as it provides a huge amount of flexibility to the users of the system
while at the same time—due to the predicate-object format—still features a
certain amount of structure. This fact is crucial in online, mass-collaboration
information systems, as there are thousands of different users who come from
different social levels, backgrounds and edit information of different domains
and contexts. Along with this essential feature of flexibility several challenges,
such as preserving a homogeneous structure, arise.

To tackle those challenges related to the maintenance of a heterogeneous
schema, we propose in the SnoopyConcept to leverage recommender systems
to guide the user already during the insertion process to a homogeneous struc-
ture. More details about the approach can be found in Section 3.1.

2.2 Wiki Systems and Knowledge Curation

Wiki systems are widely used to facilitate mass-collaborative knowledge cu-
ration in public projects such as Wikipedia [110] but also in closed corporate
environments [111]. Therefore, many research projects have been dealing
with wikis, the behaviour of their users, and extensions and improvements in
the ecosystem of Wikipedia. In this section we discuss wiki approaches to
improve the knowledge curation but also drawbacks and limitations of wiki
systems which can me mapped to the SnoopyConcept as they describe univer-
sal problems in the area of knowledge curation.

12



2.2 Wiki Systems and Knowledge Curation

2.2.1 Wikipedia and its Structural Limitations

In context of the SnoopyConcept especially the topics of semi-structured and
machine readable data in Wikipedia and its quality and quantity are most
relevant. The core of Wikipedia to create and maintain simple plain text
documents does not support any structured or machine readable information
at all. The information retrieval in Wikipedia by users is limited to a full-text
search and the usage of links. Especially the interlinking of articles is very
important to structure and categorize content and knowledge and enhance
search capabilities. Already in 2005, Krötzsch et al. [101] pointed out the
limitations of the link and category system in Wikipedia3 which was realized
on top of classical page oriented system of Mediawiki. Many link pages which
just contain a list of articles, for example a list of all cities in Austria were
created and have to be maintained and updated manually. To create a more
restricted view e.g., of all capital cities in Austria a new page has to be created
and maintained. This example is relatively static as cities do not change that
often. When considering a more dynamic example, such as a list of all Open
Source Wiki Software, the changing frequency increases dramatically. To keep
all link pages and categories up to date by using a manual approach is very
error prone and time intensive.

Due to these huge amount of manual tasks since the beginning of Wikipedia
bots4 have been running to fulfill easy tasks automatically and support the
committed community of Wikipedia. Currently there about 2,000 bots 5 which
take care of Wikipedia’s content. Although they are limited to simple tasks
(e.g. inform authors about syntax errors) as semantic reasoning is a diffi-
cult task especially when dealing with Wikipedia’s plain text content which
provides almost no structure at all.

The only available structure in Wikipedia is the linking system which has
been heavily exploited by many research projects. Very popular examples
are dictionaries and thesauri that are based on the interlinking system and
disambiguation pages of Wikipedia [159, 117]. In Section 2.2.3 we present
more approaches which heavily rely on the knowledge stored in Wikipedia.

3https://en.wikipedia.org/w/index.php?title=Wikipedia:Categories,_lists,_and_

navigation_templates&oldid=710181660, accessed 2017-07-17

4https://en.wikipedia.org/w/index.php?title=Wikipedia:Bots&oldid=705099747, ac-
cessed 2017-07-17

5https://en.wikipedia.org/w/index.php?title=Wikipedia:Bots&oldid=705099747, ac-
cessed 2017-07-17
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In the next section shortcomings of the first wiki systems respectively Wikipedia
are discussed and improvements in the Wiki ecosystem in research but also
corporate environment are shown.

2.2.2 Wiki Enhancements

Since the introduction of the first wiki systems that have only provided ba-
sic edit functionality, many improvements and additional features have been
introduced to the world of collaborative editing in Wikis. Especially off the
beaten track of Wikipedia which has been showed a very inert ability to in-
novate [154], many new innovations have been introduced and developed in
the enormous ecosystem of wiki systems. Two major shortcomings of classical
wiki systems that are relevant in the context of this thesis, the complicated
insertion process to insert information and the way of finding information in
wiki systems.

Enhancing the Editing Process

Most wiki systems provide a wiki specific markup language to create and edit
content and knowledge. The edit process itself is done in a simple plain text
field which contains the markup language code. Especially at the beginning
wikis were used by more technical or experienced users who were able to
understand and use a markup language. From a technical perspective, markup
editors are easy to implement but constitute a barrier for less experienced
users. In general, the contribution to a wiki systems prerequisites knowledge
in many areas. The user has to be aware of all rules and the overall process of
creating new knowledge. Furthermore, the user has to be able to cope with all
technical barriers such as the markup language or other structural enrichment
like infoboxes or linking articles. Halfaker et al. showed in 2013 in a study [67]
that the severe drop out rate of Wikipedia contributors of 30% between 2006
and 2011 could led back to the barriers that have to overcome to contribute
to Wikipedia. Besides rules, regulation and the missing knowledge about the
contribution process the Wikimedia foundation also mentioned the lack of a
simple visual editor [144, 145]. To improve the user experience many wiki
systems have introduced WYSIWYG (what you see is what you get) editors
which transparently hide the underlying markup language. The Wikimedia
foundation growth team6 that was initiated to increase the number of editors
again introduced a peer group system to support editors7 and a new visual

6https://www.mediawiki.org/wiki/Growth, accessed 2017-07-17

7https://meta.wikimedia.org/wiki/Research:Teahouse, accessed 2017-07-17
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editor8 which was initially launched 2012 for testing and has been used as the
default editor in Wikipedia since 2015. Pfisterer et al. conducted a user study
in [129] to evaluate how the semantic features of the Semantic MediaWiki
can be promoted to unfamiliar users and in general, how the user interaction
process can be optimized. Based on the results they authors proposed and also
implemented improvements of the user interface, such as the direct editing of
annotations without editing the source code which lowers the barrier to add
annotations dramatically.

Due to those findings, the SnoopyDB reference implementation of the Snoopy-
Concept presented in Section 5.1 puts a strong emphasis on the usability of the
editor and its recommendations. For example, the SnoopyDB prototype aims
at identifying the type of the inserted value and suggests units or semantic
enhancements. This leads to an increase of the quality of inserted knowledge
as described in Section 3.3.3) in more detail. Furthermore, the SnoopyCon-
cept recommendation points to missing information in the system and thus,
encourage the user to insert more information to the system.

Enhancing the Navigation and Search

As classical wikis are based on the hypermedia principle which features navi-
gation by links, categories or tree structures are not provided by default. Es-
pecially wikis in the enterprise environment such as Confluence9 have added
the support to navigate using a tree structure. Trees are well known as they
are used on websites, in content management systems or file browsers and
therefore, are naturally understood by many users. Furthermore, content can
be classified by using the tree structure and attached to departments or other
internal structures of an enterprise.

Zubiaga et al. [191] identified three main navigation patterns in Wikipedia.
Besides the simple keyword based approach there are two major patterns. The
category-driven navigation describes the browsing by using the Wikipedia’s
taxonomy which is limited as Wikipedia’s category system is manually main-
tained and not fully complete. A more successful approach is to use the link
system within Wikipedia. The high number of links is one of the main char-
acteristic of Wikipedia and therefore, well suited for a link-driven navigation.
Nevertheless if a link is missing the user cannot be sure, if the information
is not linked or not present in the system. Therefore, Zubiaga et al. pro-
posed a social tagging system to improve the search capabilities. Tags can
be used for searching but also filtering, e.g., gathering documents containing

8https://en.wikipedia.org/wiki/VisualEditor, accessed 2017-07-17

9https://www.atlassian.com/software/confluence, accessed 2017-07-17
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a tag but excluding another one. Sweetwiki [31] aimed for an improvement
of the user experience by providing easy to use editors and add semantic fea-
tures to improve the search experience. Besides social tagging mechanisms,
and a SPARQL interface the wiki consists of an ontology builder to maintain
the taxonomy that can be used to further structure the content in Sweetwiki.
WikSAR [15] represented a wiki as an interactive graph that can be used to un-
derstand complex structures. Furthermore the query language could be used
to generate collections which are updated automatically based on the query.
As an underlying technology the semantic standard RDF and SPARQL was
used.

The presented optimizations and approaches show that the gap between plain
text knowledge and structured knowledge is crucial as it directly influences
the navigation and search capability. The SnoopyConcept addresses this issue
by proposing semantic enhancements, e.g., specifying semantic links to other
subjects. Those links can be used to navigate in the knowledge base but
also increase the search capabilities. The following sections describes more
approaches that also try to bridge this gap and built computer processable
knowledge.

2.2.3 Semantics, Wikidata & Knowledge Bases

One of the most successful meta projects which are based on the knowl-
edge of Wikipedia is DBpedia [14]. DBpedia parses all textual information
of Wikipedia articles, extracts semantic information and provides the knowl-
edge of Wikipedia in a computer processable format. One of the most import
sources in Wikipedia pages are infoboxes which are tabular aggregations of
the most important facts of a Wikipedia article. Figure 2.1 shows the article
“Innsbruck” and its Infobox.

In contrast to fulltext, these facts have a clear semantic as they are inserted
as key-value pairs. DBpedia extracts these pairs from the complex markup
language, applies cleaning filters and finally converts the extracted knowledge
to a computer processable format such as RDF. Furthermore, DBpedia incor-
porates all links, categories and other structures which are used to classify
and structure Wikipedia articles. The DBpedia release 2016-0410 consists of
9.5 billion triples which were extracted from Wikipedia and interlinked with
many other datasets in the LOD cloud. DBpedia is one of the most important
sources in the LOD cloud and is often shown as the central repository which

10http://wiki.dbpedia.org/dbpedia-version-2016-04, accessed 2017-07-17
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Figure 2.1: Infobox in Wikipedia article about Innsbruck

used as a linkage base for all other datasets11. The DBpedia dataset was also
used in our offline evaluation presented in Section 6.1.1.

Also Google introduced a new feature which relies on the knowledge of
Wikipedia and is called Knowledge Graph [83]. This graph is exploited to
better understand the search terms and show a summary (cf. Figure 2.2) of
important facts regarding the inserted search terms. Considering the search
term “Albert Einstein”, Google shows a Box consisting of Photos of Albert
Einstein, important facts such as birthday or relations to other persons e.g.
Stephen Hawking. Besides Wikipedia Google’s Knowledge Graph is also based
on Freebase12 which was acquired by Google in 2010. Freebase [24] stores
about 1.9 billion facts (June 2017) about well-known people, places, music,
books and in general things. It is publicly available and can be accessed
by multiple APIs and interfaces. In contrast to DBpedia which is based on
extracted Wikipedia knowledge, the content of Freebase already consists of
structured fact tuples which can be edited directly. This direct usage of such
a structure, reduces noise and errors which can be introduced by intermediary
processing steps such as extracting and unifying knowledge.

Many people, especially around Krötzsch and Völkel [101][167], have criticized
the lack of semantic features in Wikipedia since 2005 which constitutes a big
shortcoming when dealing with the processing of information in Wikipedia by
automated processes. Due to these shortcomings the project Semantic Me-
diawiki was developed [100] which provides the possibilities to add semantic

11Linking Open Data cloud diagram, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja
Jentzsch and Richard Cyganiak. http://lod-cloud.net, accessed 2017-07-17

12http://www.freebase.com, accessed 2017-07-17
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Figure 2.2: Knowledge graph summary for Albert Einstein at Google

information to the textual knowledge by using a simple markup language.
The semantic information is created by annotating wiki pages. The Seman-
tic Mediawiki introduced three different types of annotations. Categories to
classify wiki pages, Relations to describe relationships between wiki pages and
Attributes to specify information of the wiki page in a structured and seman-
tic manner. Categories are based on the already available category system of
Mediawiki and is just lifted to a semantic representation and interpretation.
Relations can be seen as simple links between articles which are also already
present in Mediawiki. The Semantic Mediawiki extended the power of links by
specifying the type of a link. This provides the possibility to add additional
semantic information to a link. Consider the example of Albert Einstein who
is linked with Alfred Kleiner. One cannot see how these two people are related
by just considering the simple link. If a typed relation was added in the Se-
mantic Wiki page of Albert Einstein, such as [[doctoral advisor::Alfred

Kleiner]], one can simply identify the type of the relationship between Albert
Einstein and hist doctoral advisor Alfred Kleiner. Attributes, the last type of
annotations in the Semantic Mediawiki, allow to specify relationships to things
which are not present as a wiki page. For example the birthday of Albert Ein-
stein can be specified by adding the text snippet [[birthday:=1879-03-14]]
to the wiki page of Albert Einstein. Furthermore attributes can be typed by
specifying an additional relationship between the attribute and a type. For ex-
ample the Attribute::birthday and the type:Date can be interlinked to specify
the type of birthday. All this information can be used for further automatic
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processing and reasoning. The Semantic Wikimedia system provides such a
processing and offers querying facilities to answer queries or even create dy-
namic pages or parts of pages. For example on the wiki page of Alfred Kleiner
all advised phd students can be listed automatically. The big advantage is that
such lists do not need to be held up to date manually as they are computed
dynamically. Also complex queries such as “List all scientists who were born
in 1879” are possible by querying the category and birthday attribute of wiki
pages. As this approach does not limit the user in the choice of attributes,
the problem of proliferation of attributes (cf. Section 2.4.1) arises and directly
impede the search capabilities. To solve this problem, the SnoopyConcept
computes recommendations of suitable attributes to prevent synonyms in the
vocabulary of attributes and thus, increase the search capabilities.

The community of the Semantic Mediawiki ecosystem has requested since the
beginning of the semantic extension of Mediawiki to integrate the semantic
annotation feature to the Wikipedia system. But it took nearly 10 years until
the Wikipedia community appreciated the worth of a semantic knowledge base
and in April 2012 a new project in the Wikipedia ecosystem was initiated —
Wikidata[169, 170]. Wikidata aims at providing computer processable knowl-
edge which is maintained by the Wikipedia community. It was the first new
project since 2006 by the Wikipedia Foundation and forced by the German
chapter of Wikimedia. The project was funded by Allen Institute for Artificial
Intelligence, the Gordon and Betty Moore Foundation, and Google, Inc. and
has been lead by Denny Vrandečić who was one of the founders of the Seman-
tic Mediawiki 13. The Wikidata project is based on the Mediawiki software
to provide highest interoperability and offers the possibility to store key-value
pairs in the fashion of a document-oriented database. The main goal of the
database is to store general facts in a central place. Considering the fact about
the birthday of a famous person which is stored in multiple Wikipedia articles
in different languages. As each language is operated by its own Wikimedia
association and own infrastructure the birthday is stored and maintained in
different databases. Especially often adapted values, such as the population of
a country, have to maintained in different languages and Wikipedia versions.
This storage concept is very error prone and lead to multiple inconsistencies.
Thus, Wikidata provides the possibility to store these facts in a centralized way
which can be accessed and referenced by all Wikimedia projects. Additionally
to the fact itself, a reference url is stored to specify the source of the infor-
mation and increase the traceability. Besides the facts which are located in
infoboxes also other structural or semantic knowledge is stored in Wikipedia.
The whole category system or interlanguage links between articles about the
same item in different languages were defined by using the markup language

13http://en.wikipedia.org/w/index.php?title=Wikidata&oldid=571240689, accessed
2017-07-17
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inside articles. Such links, category membership information and lists have to
be maintained in each language by their local community. All this information
can be stored in Wikidata and reused for example to automatically generate
category member lists. Currently many people and projects including their
bots are striving to move already present data to Wikidata and also fill the
new knowledge base [170]. Furthermore, Wikidata is not only important for
all Wikipedias but also paving avenues for further external projects and re-
searches who are now able to access millions of community proven facts. We
used the Wikidata dataset to evaluate the Wikidata’s property suggestor and
an extension we proposed in Section 5.4.

Besides Wikidata, DBpedia and Freebase several other knowledge bases which
represent common world knowledge exists. Many of them are based on knowl-
edge harvesting (cf. Section 2.4.2) methods which try to construct knowl-
edge bases automatically by crawling and analyzing websites. KnowItAll/Re-
Verb [55, 53], NELL [36] and Yago [76, 161] aim at extracting facts out of
written sentences. The systems use predefined knowledge for seeding and
identify patterns which subsequently used to find new knowledge. Most ap-
proaches present the automatic extracted facts to users who can decide if the
fact is true. This manual feedback can be used to refine the extraction algo-
rithms, judge found patterns and improve the precision of the certainty level
of found facts. Besides the scientific approaches also commercial databases
such as Microsoft’s Concept Graph14 or Watson’s database [113] are built.

Most of the presented datasets are curated by a committed community which
tries to sustain a homogeneous schema in the knowledge base. The Snoopy-
Concept is well suited to build such a knowledge base while relieving the com-
munity by pushing the task of homogenization to the user. This is achieved
by guiding the user to a homogeneous structure already during the insertion
process as explained in detail in Section 3.3. Furthermore, the SnoopyConcept
recommends semantic enrichment to the user which increases the amount of
links in the dataset. Especially, when incorporating the LOD cloud this inter-
linking is beneficial for the search capabilities.

2.3 Recommender Systems

The core of the SnoopyConcept is a recommender system which aims at guid-
ing the user to a homogeneous schema and increasing the quality and quantity
of stored knowledge in an information system. In this section we introduce the

14https://concept.research.microsoft.com/, accessed 2017-07-17
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foundations of recommender systems and describe different recommendation
approaches.

2.3.1 Introduction to Recommender Systems

As human beings we are often forced to make choices without sufficient expe-
rience in the respective area. To cope with this lack of experience we often rely
on recommendations from other people by word of mouth, recommendation
letters or general reviews in newspapers and guides [138].

Recommender Systems assists the user and augment the natural social in-
teraction with the system by recommending suitable items to the user [138].
The first recommender system was implemented in 1992 [66] and introduced
“collaborative filtering” which has become the de facto standard in the area
of recommender systems. Since then the topic of recommender systems has
grown heavily in research and industry and is nowadays present in many dif-
ferent areas.

These days recommender systems can be found in most of all online platforms.
One of the first well known examples is the shopping platform Amazon15 which
suggests their users further suitable articles based on user profiles [107, 155].

Beside suggesting books to users within the last decades recommender systems
have become an important piece of technology in many areas. Especially in
areas that heavily rely on user preferences it is obvious to use recommender
systems. Therefore, the recommendation of suitable music and movies to users
has become a very important field in research and industry. The most promi-
nent representative is MovieLens [71] which is a dataset consisting of movie
ratings that was released in 1998 and since then has been served the basis for
many research approaches. Boosted by the rise of streaming services for mu-
sic and movies this field of research has been growing rapidly within the last
few years [148]. This is also reflected in the amount of workshops and tracks
related to music and movie recommender systems in the top conferences such
as RecSys16 or ISMIR 17. In particular in the domain of music and movies not
only user profiles are used to build recommendation algorithms but also con-
tent based features are considered. For example the style or genre of a music
track or the metadata of a movie can be incorporated to improve the recom-
mender system. Such content based recommender systems are often combined

15http://www.amazon.com, accessed 2017-07-17

16http://recsys.acm.org, accessed 2017-07-17

17http://www.ismir.net, accessed 2017-07-17
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with the classical user based approach to improve the overall performance of
the recommender. An additional dimension which has become increasingly
important within the last few years is the context of recommendations. This
contextual information, such as location and time can have a significant in-
fluence on recommended items. Systems that incorporate the context for the
computation of recommendations are so called context aware recommender
systems and are widely used [92]. Especially one field that was originally
not classified as a recommender system heavily rely on the context adaption,
namely search engines. They have evolved from simple search tools to power-
ful, context aware recommender systems that exploit user profiles and several
other sources to deliver personalized search results [156]. The mentioned areas
only scratch the surface of all use cases for recommender systems but already
demonstrated that recommender systems are widely used in many different
areas and domains. The different types of recommender systems are described
in the following section.

2.3.2 Classification

Recommender Systems were classified by several authors [86, 6, 139, 119, 40]
and differ on a detailed level. In this work we classify recommender systems
in a similar way into the following types.

• Collaborative filtering

• Content-based recommender systems

• Knowledge-based recommender systems

• Context-aware recommender systems

• Hybrid recommender systems

In the following sections the approaches and their differences are described.

2.3.3 Collaborative Filtering

Collaborative filtering is the de facto standard in the area of recommender
systems and was also used by Goldberg in 1992 [66] to implement the first
recommendation system. Goldberg et al. introduced the term Collaborative
Filtering which describes the usage of collected opinions or behaviors of ex-
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isting users. Based on this gathered data the recommendation systems tries
to predict which items the current/new user likes or is interested in. As this
approach was the first recommender approach it has been extensively explored
by the research community and nowadays, is also widely used in many areas
and products.

The basic algorithm is based on a matrix with two dimensions, namely users
and items. Every cell contains the information if the respective user likes
or dislikes the respective item. The algorithm takes this matrix as an input
and provides a ranked list of items that are interesting for a specified user.
The provided list contains only items that the user has not marked as (not)
interesting so far.

The recommendation task is formally defined by Adomavicius et al. [6] as
follows:

∀c ∈ C, s′c = max
s∈S

u(c, s) (2.1)

Let u in Equation 2.1 be a utility function that measures the usefulness of an
item s to the user c with u : C × S → R where R is a totally ordered set.
For each user c ∈ C we want to find a new item s′ ∈ S that maximizes the
user’s utility function. As the function u is not defined for every combination
of s and c the aim of an recommender system is to predict the result of the
function u on items that have not been rated so far. For example a movie
recommendation system has to predict if a non-rated movie is “useful” for a
specific user c.

The most common approach is a user based algorithm which relies on user
profiles and their similarities. A user profile of user cj is defined by all com-
puted values of the utility function u(cj , s) of all rated items. The prediction of
u(cj , s) for a non-rated item s is realized by considering all other user profiles
that are similar to the user profile of user cj . Depending on the ratings for item
s by all similar users the result of u(cj , s) can be estimated. Considering the
example of a user c in a movie recommender system, the recommender system
tries to find other users who have a similar taste. The taste is defined by likes
and dislikes of movies. If users like or dislike the same movies it is obvious
that they have a similar taste. The recommender system can subsequently
recommend movies that haven’t been watched by the user c but already liked
by all other similar users. The similarity between two users can be calculated
by e.g. applying the cosine similarity or any other set based similarity measure
on both user vectors that contain the user ratings of all items.
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Since the beginning in 1992 the basic algorithm has been improved and ex-
tended by several approaches [87]. For example nowadays, the “usefulness”
of an item is no longer defined as a boolean value (“like” or “dislike”) but
as a rating (e.g. between 1 and 10) and therefore, allows a more fine-grained
computation of recommendations. Also the user profile can be extended [6]
by e.g. adding demographic information or other meta-data about the user.
These additional information can be used to improve the algorithm to find
similar users as not only the ratings are considered. Another improvement to
get more insights about the taste of users is to exploit external sources. For
example publicly available data such as tweets can be harvested to build user-
item information and find relations between items. For example, we built a
music recommender which implements a collaborative filtering approach based
on tweets about listened music tracks [185]. Especially to overcome the cold
start problem or to cope with very small user bases the consultation of external
sources, such as Twitter, is very beneficial.

Regarding the implementation of the collaborative filtering approach we can
distinguish between two major approaches [6, 28], namely memory-based and
model-based approaches.

Memory-Based Collaborative Filtering

Memory-based algorithms are straight forward as they consider the full matrix
of all previous ratings which are created by all users. The name derives from
the fact, that the matrix has to be loaded into memory to compute a recom-
mendation. Most approaches apply nearest neighbor algorithms to find similar
users. Widely used algorithms are Pearson’s correlation coefficient, adjusted
cosine similarity, Spearman’s rank correlation coefficient or the mean squared
difference measure [87]. According to Herlocker et al. [74], the Pearson’s cor-
relation coefficient outperforms other algorithms when considering user-based
collaborative filtering.

The basic collaborative filtering approaches consider likes for all items with
the same weight. In real world examples it can be seen that there are many
items that are voted by most of the users. Thus, votes or ratings on such
items are not very helpful to find good recommendations. Therefore, the idea
is to put more weight on more controversial items that are not voted very
often. Breese et al. [29] introduced the “inverse user frequency” and Herlocker
et al. [74] addresses the problem by a so called “variance weighting factor” to
improve the recommender accuracy.
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Model-Based Collaborative Filtering

In contrast to the memory-based approach which computes recommendation
by considering all available data, the model based approach uses a precom-
puted model for the recommendation computation [87]. This model is com-
puted in advance in an offline step and takes all available raw data into account.
The “learned” model is able to approximate results but does not need all the
raw data and therefore, is more efficient in terms of memory usage than the
memory-based approach. Especially when considering very large user bases
with tens of millions of users a memory-based approach might be no longer
feasible.

For the model creation task “dimension reduction” algorithms and “matrix
factorization” methods are widely used [87, 85, 99]. These techniques derive a
set of latent factors in the user-item matrix to be able to collapse the matrix
into a smaller approximation. One of the first approaches was the “singular
value decomposition” (SVD) approach which was introduced by Deerwester
et al. in 1990 [49] in the area of semantic analysis. The algorithm aims at
finding co-occuring terms which are highly correlated and can be reduced to
one single value.

As model-based approaches are based on approximations one could obviously
state that model-based approaches have a lower precision as not all data is con-
sidered which is true for many cases. Although experiments showed [87, 146]
that in several use cases model-based approaches outperforms memory-based
approaches which can be led back to the removal of noise which negatively
impacts the accuracy.

Furthermore, within the last decades many improvements in the area of model-
based collaborative filtering have been introduced [139, 98, 126, 137] and there
is still a very large research community which works on further improvement
in the area of model-based collaborative filtering. One striking example is the
winner team [165] of the Netflix prize competition [18, 17] that created a highly
tailored recommender system that outperforms the Netflix recommendation
algorithm by over 10%.

Besides the optimization of the user based memory or model based approaches
many algorithms also consider meta-data about items. In literature and re-
search item based approaches are sometimes not classified as collaborative
filtering approaches but build their own class of content-based recommender
systems which are described in the following section.
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2.3.4 Content-based Recommender Systems

Content-based recommender approaches [88] approaches take information
about the item into account to compute recommendations. This is achieved
by building a item profile and a user profile which is then compared to rec-
ommend suitable items. For example in the area of movie recommendation
systems a genre based classification can be used. For the computation pro-
cess in this simplified example we consider user profiles which consist of genre
preferences to find movies that adhere to the user’s preferences.

The meta-data about items can be classified into technical features and sub-
jective or qualitative features. Technical features such as the genre or the list
of actors of a movie can be easily retrieved and exploited for the computa-
tion of recommendation. In contrast, qualitative features such as quality or
taste are difficult to retrieve and more difficult to interpret. Especially the
subjective impression and the resulting rating about a movie is very difficult
to track and understand as it is often not based on hard, technical facts that
are accessible by the recommender system.

The core of a content-based recommender system is a similarity function that
compares items based on defined features. Based on the calculated similarity
the recommender system suggests items that are similar to the user’s previ-
ously liked items. For example simple text or keywords can be used to describe
items. As this problem of describing and classifying objects is a very well
known problem in the domain of information retrieval many algorithms can
be adapted to compute recommendations. The most widely used technique
in the area of information retrieval is the vector space model which describes
an items by a vector of features. In this example keywords could be used to
create the vectors which consist of multiple boolean values. Every boolean
entry in the vector defines if the respective keyword is present. To improve
the search process which aims at finding similar vectors, furthermore, the TF-
IDF weighting scheme can be applied. The weighting scheme was introduced
by Salton et al. in 1975 [143] and is based on the frequency of occurrences
of keywords. It considers how often the keyword in present in the descrip-
tion and in the whole dataset. The TF-IDF weighting scheme has become a
de facto standard which nowadays, is used in several variations in many text
based information retrieval systems. Another very popular approach is to use
k-nearest neighbours (kNN) methods [19] to find similar items in the vector
space model.

In the context of recommendation systems features of the vector space model
can be manifold. For example the previously defined user-item matrix which is
used for user-based recommendations can be reused and exploited in a content-
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based recommendation approach as well. To achieve this, the transposed ma-
trix is used and every item is represented by its rating-vector. The similarity
of two items is subsequently defined as the similarity between all user ratings
of these two items. However, the more common approach is to use features
that can be directly extracted from the items without analyzing the user in-
teraction. This comes along with the big advantage to be able to overcome
the cold start problem as we can already recommend items right after the
user liked the first item. For example when considering a music recommender
system typical acoustic features and sound textures about genre, mood, tim-
bre and tempo are automatically extracted [166, 152]. Besides the automated
extraction of information about items external sources can also be exploited
to feed a recommender system [51]. For example information about the genre,
actors, budget, director or revenue of movies can be retrieved from an external
catalog and build the basis for a movie recommender system.

In general recommender systems that solely rely on item based features are
not very common as they do not use the very powerful source of user opinions.
Therefore, it is obvious to combine both, the user and item based approach
and benefit from both sides. These so-called hybrid recommender systems are
explained in more detail in Section 2.3.7.

2.3.5 Knowledge-based Recommender Systems

Knowledge-based recommender systems [89] come into play when user-based
or content-based approaches reach their limits. Consider a shopping platform
for cars, real estate, horses or specialized technical equipment which are not
bought very often. For such use cases, recommender systems have usually
only few information about the correlation of items or the users as the systems
have to deal with just one order per user in the worst case. Even a recurrent
user could have changed her preferences regarding buying a new house or car
due to a changed family situation. The same holds for technical equipment
which outdates very quickly due to the fast pace of development. For example
information about the order of a PC system five years ago is not very suitable
to compute recommendation that are up to date. Also in very specialized
domains such as medicine information about e.g. a medical device can be
outdated very quickly.

To tackle this problem there are two common approaches used in a knowledge-
based recommendation system. The first method exploits explicit recommen-
dation rules (knowledge) which are manually created by a domain expert. The
other possibility is to interact with the user to create a user profile on the fly
which can subsequently used to find suitable items. Such a system could also
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be considered as a search engine but still confirms with the definition of a
recommender system by Burke [33]: “guide a user in a personalized way to
interesting or useful objects in a large space of possible options or that produce
such objects as output”.

Knowledge-based recommender systems are able to cope with some shortcom-
ings of traditional user-based or content-based approaches and furthermore,
provide the big advantage that there is no cold start problem at all. However,
the costs of a domain expert are usually very high and the system is very in-
flexible due to the fact that all rules and constraints are manually generated.
Therefore, the approach comes along with high maintenance costs and thus,
is not widely used.

2.3.6 Context-aware Recommender Systems

All previously described recommender approaches are dealing with only two
types of entities, namely user and item. Context-aware recommender sys-
tems (CARS) [5] consider the additional dimension “context” of the user. For
example time, location, mood or company of other people could completely
change the preferences of a user and thus, have to be considered for the com-
putation of recommendation. Every time the user interacts with the system,
the context might have changed which directly influences the user preferences
and subsequently the user profile. The context could be modeled as a con-
tinuously changing user profile. As such a modeling approach would interfere
with most recommender definitions, Adomavicius et al. [5] model the context
as an additional dimension as shown in Equation 2.2.

ClassicalRecommenderSystem : User × Item→ Rating

ContextAwareRS : User × Item× Context→ Rating (2.2)

According to this definition the rating information is attached to a triple (user,
item, context) in contrast to a classic recommender system which uses the pair
(user,item) to identify a rating. The context can be defined by additional at-
tributes in the same way as users or items can consist of further properties.
As contextual information may contain a lot of different aspects respectively
dimensions the contextual information could increase the complexity dramat-
ically. Considering again the very simple example of a movie recommender
system that includes contextual information about location (or distance to
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theaters), time and company. These three dimensions can be modeled by the
following hierarchical trees:

GeoCoordinates→ City → State→ Country
Date→ DayOfWeek → TimeOfWeek
Date→Month→ Quarter → Y ear
Company : Girlfriend→ Friends→ NotAlone→ AnyCompany

These already simplified dimensions build a huge multidimensional space that
has to be considered in the computation of recommendations. Furthermore,
the dimension time is very dynamic and involves hypes and a lot of exceptions
such as holidays. The dimension company may flip preferences of a user com-
pletely. Due to these additional non-trivial dimensions context aware recom-
mender systems are significantly more complex than traditional systems [5].

For the implementation Adomavicius et al. [5] distinguish between three dif-
ferent approaches, namely contextual pre-filtering, contextual post-filtering
and contextual modeling. The two first approaches are built on top of classic
recommender algorithms and apply additional filters. Based on the context
the pre-filtering technique filters the dataset that is used by the recommender
system. Post-filtering applies a filter on the final list of recommendations to
adapt the recommendation to the respective context. Contextual modeling
integrates the context consideration directly to the core function of the rec-
ommender and influences the selection, scoring, ranking or the model of the
system.

Similar to the combination of tradition user-item based recommenders and
contextual information also other approaches can be combined to improve the
overall accuracy. These so called hybrid systems are described in the following
section.

2.3.7 Hybrid Recommender Systems

The previously described approaches Collaborative Filtering, Content-based,
Knowledge-based and Context-aware recommender systems are coming along
with different advantages and disadvantages depending on the use case and
domain. Therefore, it is obvious to combine different approaches to gain from
advantages or be able to cope with disadvantages. According to [90] nowadays,
most recommender systems are already hybrid solutions that combine differ-
ent approaches to improve the overall accuracy. Jannach et al. [90] provide
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an overview about hybrid recommender systems and discuss different aspects
about their implementations.

2.3.8 Summary

In the presented sections about recommender systems we provided an overview
about the main approaches to implement recommender systems and presented
a basic classification system which can be used to classify different approaches
of recommender systems. Collaborative filtering approaches analyses the user
behaviour to compute recommendations, whereas content-based approaches
take meta-information about items into account. Especially if such meta-
information is not present or correlations between items are not known, the
collaborative filtering approach is more powerful as it solely on usage data.
Therefore, the availability of a sufficient amount of user data is a hard re-
quirement for collaborative filtering approaches. To tackle the lack of meta-
information or usage data knowledge based approaches incorporate specialist
and their domain knowledge to build recommender system in a more man-
ual fashion. Furthermore, extensions such as the consideration of contextual
information to refine recommendations were discussed. The examples that
were presented in the previous sections are mostly located in the domain of
e-commerce and the personalization in this domain. As most recommender
systems were developed to provide shopping suggestions it is obvious that
many approaches are tailored for this domain. In the next section we discuss
a very young field of research, namely the usage of recommender systems in
information systems to guide users during their interaction with the system.

2.4 Recommender Systems in Information Systems

Recommender systems are very common in the domain of e-commerce, es-
pecially to realize personalization. Nowadays, recommender systems are also
used in the domain of information systems to guide users during their in-
teractions with the system. One indisputable property of mass-collaborative
information systems is the homogeneity of structured knowledge as it is cru-
cial in terms of accessibility and searchability. The challenge of maintaining a
homogeneous schema which is also the main goal of the SnoopyConcept and
possible solutions for the challenge are described in the following sections.
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2.4.1 Synonyms and Search Capabilities

One of the most severe challenges in semi-structured information systems is
the usage of synonyms—semantically equivalent but syntactically different
terms. They dramatically decrease the search capabilities of the information
system [54] as information of the same type is tagged with different labels.
This problem occurs in information systems that do not limit the user to a
predefined schema but provide the possibility to freely choose terms to store
information. Consider for example two properties inhabitants and population
which were introduced by two users in an information system. Both proper-
ties may be used to describe the same information—namely the number of
citizens—and therefore, are semantically equivalent. On the other side, both
properties are syntactically different and therefore, increase the heterogeneity
of structure the information system. This heterogeneity decreases the search
capabilities as the second property inhabitants respectively the subject that
uses this property is not found if searching for property population and vice
versa. This challenge was already described by Furnas et al. [59] who showed
in the 80’s that the chance of two humans choosing the same term for the
same object is only about 20%. Especially in the area of mass-collaboration,
this fact has a dramatic impact as thousands of different users from different
social levels and backgrounds add terms and properties in different domains
and settings to the information system.

In science, this phenomenon was studied deeply in the area of folksonomies.
The term Folksonomies was introduced by Thomas Vander Wal [128] and is a
portmanteau of folk and taxonomy and describes the resulting tag-cloud of a
social tagging system. Tagging systems provide the user to freely annotate ar-
bitrary resources by simple terms. The term social-tagging refers to large pub-
lic systems such as BibSonomy18 (tagging of publications), del.icio.us19 (tag-
ging of bookmarks) or Flickr20 (tagging of photos) which use a collaborative
tagging system to organize their community-created content. Folksonomies
contain information about the usage of tags within a social tagging system in
the form of triples. In particular, a triple in the form of (tag,user,resource)
is used to store the information about the user who assigned a tag to a specific
resource. The concept of social tagging was one of the main principles in the
Web 2.0 area and has become a de facto standard nowadays. For researchers,
such folksonomies have become a major research target as they are very large,
consist of thousands of terms and are public available. Many research publi-
cations analyze the social usage and creation of folksonomies and try to find

18http://www.bibsonomy.org, accessed 2017-07-17

19http://del.icio.us, accessed 2017-07-17

20http://www.flickr.com, accessed 2017-07-17
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trends and user behavior patterns in the area of folksonomies. The found pat-
terns give insights into the behavior of communities or can be used as a basis
for other research topics, such as recommender systems. Multiple research
results [108, 109, 68, 40] show that folksonomies follow a long-tail distribution
which means that few tags are used very often and a big amount of all unique
tags are used on a very rare basis.

Characteristic Value

Messages containing one or more hashtags 49,696,615
Hashtags usages total 65,612,803
Average number of hashtags per message 0.16
Average number of hashtags per message 1.32
(within set of tweets containing at least one hashtag)
Maximum number of hashtags per message 47
Median of hashtags per message 1
Hashtags distinct 7,777,194
Hashtags occurring ≥ 5 times in total 757,832
Hashtags occurring < 5 times in total 7,135,627
Hashtags occurring < 3 times in total 6,841,523
Hashtags occurring once 5,765,835
Average number of usages per hashtag 8.43
Median number of usages per hashtag 1

Table 2.1: Hashtag distribution of crawled Twitter dataset

This long-tail distribution can be found in many collaborative created datasets.
For example, it was also clearly evident in our crawled Twitter data-set which
was published in [188] as 6 million of 8 million distinct hashtags appear only
once (cf. Figure 2.3).

Only 700,000 hashtags occur more than 4 times as shown in Table 2.1. This
distribution is strongly connected to the usage of synonymous terms as every
user has a different linguistic competence and uses a different thought pattern.
Furthermore, especially in this example of Twitter, which limits messages on
their platform to 140 characters, abbreviations and other short forms increase
the probability of additional synonyms. For example our dataset, which was
crawled in summer of 2012, consists of many tweets regarding the Tour de
France (a world-famous bicycle race in France) which were annotated by #tdf,
#tdf12, #tdf2012 #tourdefrance, etc. All hashtags have the same meaning
but feature a different syntactically structure and therefore, limit the search
capabilities if only one hashtag is used to search for tweets.
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Figure 2.3: Hashtag distribution of crawled Twitter dataset

Due to the problem of the long-tail distribution of folksonomies, recommender
systems have evolved in this area to cope with this problem of synonyms. The
avoidance of synonyms is also one of the key features of the SnoopyConcept
(cf. Section 3.3). In general, the approaches which aims at homogenization
knowledge can been categorized into two main classes. The first class consists
of traditional approaches that deal with already stored knowledge, that is
aligned by other users or administrators at a later point in time. The second
class of approaches aims at aligning the knowledge already during the insertion
process. Both types are sketched in Figure 2.4 and discussed in more detail in
the following sections.

2.4.2 Guided Refinement and Enrichment

The main idea of the following approaches is the collaborative refinement of al-
ready existent semi-structured data. The possible refinements, alignments and
extensions of already stored knowledge are mostly computed based on external
sources. Such sources can be other structured or semi-structured knowledge
bases. But even the web—the biggest available knowledge base—can be ex-
ploited to gather new refinements of already stored knowledge. Especially the
exploitation of the web is very challenging due to its size, the unstructured
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Figure 2.4: Two main approaches to improve heterogeneity

format and the associated scaling and performance issues. Approaches which
use external sources to compute refinements and subsequently rely on a col-
laborative review of the detected refinements (sketched in Figure 2.4 (right
box)) are described in the following sections.

Alignment & Refinement

As already carved out in the introduction of this section, collaboratively cu-
rated data may also be refined and aligned after the insertion of data. This is a
crucial step in order to provide efficient querying facilities. Such an alignment
mostly aims at homogenizing the set of predicates to a common schema.

During the last years, various approaches for aligning and matching RDF data
have been developed. Hausenblas and Halb use a manual approach [73] that
enables users to collaboratively interlink resources within RDF data. Beside
such a manual alignment, also automatic alignment methods have been de-
veloped. The method proposed by Horrocks et al. [78] is based on common
naming schemata, namely the comparison of properties within the datasets.
Further approaches only rely on string-matching, e.g. for the DBpedia Lookup
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service21. Such alignment services may also be based on context information
of the entities which have to be aligned, e.g. based on the geographic coordi-
nates, data types, etc. The Silk project [168] aims at combining these different
alignment techniques to interlink RDF datasets.

Knowledge Harvesting & Information Extraction

The process of information extraction or knowledge harvesting aims at scan-
ning the unstructured text of arbitrary documents and extracting structured
knowledge to extend or build large knowledge bases. The retrieval of facts
from natural language sources, such as unstructured web documents, is mostly
based on NLP-techniques. Natural Language Processing (NLP) [91] is basi-
cally concerned with how a computer system can understand natural language
in order to gather the sense of a sentence. By doing so, computers are able to
summarize texts, detect entities and to extract certain facts from a text.

Also YAGO and DBpedia (cf. Section 2.2.3) extract information from the plain
text of articles although, the extraction method is very limited as it is based
on fixed patterns which are focused on a very small amount of the available in-
formation in an article—either infoboxes or category information. Therefore,
the following approaches extend the simple pattern matching to more com-
plex matching algorithms or NLP-techniques, which analyze the grammatical
structure of sentences.

For an automated creation of large knowledge bases, the manual creation of
patterns is not feasible. Therefore, ground truth data or other knowledge
bases are used to create patterns which are learned and refined automatically.
Suchanek et al. [160] introduced SOFIE which uses the knowledge base YAGO
to find new patterns. This is accomplished by searching already known infor-
mation (trusted facts) in natural language documents. Consider the known
fact that Einstein was born in Ulm which is stored in a triple <Einstein>

<bornIn> <Ulm>. If many documents contain the sentence “Albert Einstein
was born in Ulm” the pattern “X was born in Y” can be derived for finding
values for the property bornIn. After this step, the pattern can be used to
harvest new bornIn-information of already known persons (X) and cities (Y)
in arbitrary natural language documents. Nakashole et al. [122] showed that
such an approach is also feasible for the web in terms of scalability.

Wu et al. [178] introduced an approach to find missing values of infoboxes in
the natural language text of Wikipedia articles as a part of their “Intelligence
in Wikipedia” project. The extraction process is accomplished by the Kylin

21http://lookup.dbpedia.org/, accessed 2017-07-17
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extractor. This extraction process is started by a preprocessing step which is
responsible for the creation of a training set for the extractor. This is done by
retrieving the most popular attributes from pages which make use of the same
infobox template. For each of these attributes, standard NLP techniques are
used to label a matching sentence which contains the attribute’s value. The
extraction of facts for Wikipedia infoboxes is done by learned extractors based
on conditional random fields.

All described approaches result in new semi-structured facts which feature
a varying confidence value as they were created using an automated process
without any user interaction. Therefore, an additional review process is needed
to dismiss invalid or wrong facts and confirm true facts. The SnoopyConcept
guides the user by recommending semantic refinements already during the
insertion (cf. Section 3.3.3) and therefore, does not require a review process at
a later point in time. Different approaches for the review process are described
in the following section.

Review Process / Mixed-Initiative

Knowledge bases, such as YAGO or DBpedia described in the section above,
provide reliable knowledge with a very high confidence as they are based on
very limited patterns which are optimized for a single source like Wikipedia
infoboxes. To go beyond this scope, new approaches introduce more flexible
patterns and extractors such as Kylin or SOFIE described above. However,
this flexibility implies higher error rates and lower confidence which have to
be tackled. This can be realized by automatic reasoning or by a collaborative
review system which exploits the human resources and knowledge of a large
community. Automatic reasoning is able to dismiss many wrong facts by using
logical rules [122, 160]. E.g., it is not possible that a doctoral advisor is more
than 100 years older than the PhD student. The precision (correct found facts)
of reasoning enhanced systems can be up to 98% [122, 160] if the underlying
knowledge base is comprehensive and the searched relation is clear and without
ambiguity. Especially semantic meanings and ambiguities decrease precision
dramatically. E.g., the ambiguity of city names in the United States for a
bornIn relation is very misleading (e.g. there are over 40 different cities called
“Washington” in the USA).

Especially the disambiguation of such homonyms or the review of more com-
plex relations requires collaborative involvement of human users. Such ap-
proaches lead to a higher number of correct facts [76, 178, 180]. Approaches
combining the human and machine intelligence are called mixed-initiative ap-
proaches [79]. They basically try to exploit the advantages of both the user and
automatic information extraction processes as the extracted chunks of infor-
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mation are verified by human users before this information is finally published.
The “Intelligence in Wikipedia”[173] project uses the extraction framework de-
scribed in the section above to compute new infobox entries. Subsequently,
these candidates are shown to the users of the system who are then able to
decide whether the candidate infobox entry was successfully and correctly ex-
tracted from the text. This is of crucial importance especially in the case of
ambiguities which cannot be resolved by automated processes and can only
be resolved by users. This mixed-initiative approach features the advantage
that automatically extracted information are still reviewed by humans and
therefore (i) verified information is published as it is subsequently added to
the according infobox and (ii) the training sets of the information extraction
system are refined and reviewed and as such, the extraction process as a whole
is improved. It was also shown that the acceptance of such an system is very
high, as the tasks that are have to be fulfilled by the users are small and
easy to accomplish. The users only have to decide whether an extracted fact
is correct or not. By doing so, normal users (not just active contributors to
Wikipedia) are encouraged to contribute to the mixed-initiative approach.

All described approaches combine the intelligence of both humans and ma-
chines, as the algorithms can filter extensive data sources by mining algo-
rithms in the first step. Subsequently the human user can review the small
amount of recommended knowledge and import the knowledge by accepting
the recommendation or resolve ambiguities and other errors. Furthermore,
the recommendations and guidance mechanisms help to lower the barrier to
contribute to a system and encourage the user to increase the quality and
quantity of information with the knowledge base. This approach is also used
in the Snoopy Concept but is already applied during the insertion process
when the user—usually a specialist in her domain—is still present and open
to refine her inserted content. More details about the guidance during the
insertion can be found in cf. Chapter 3) and the following section.

2.4.3 Guidance during the Insertion

In the previous section all approaches are dealing with already stored knowl-
edge. Considering the fact that in most cases the user who inserts data to the
knowledge base is a specialist in the field of the edited content, it is worth to
incorporate the user into the complex task of alignment and improvement of
the content. Consider Wikipedia as an example, the interface to insert new
information to Wikipedia consists of only one input field. All features to struc-
ture, link or format the content is realized by using a very complex wiki-syntax
which has to be known by the user by heart. There is hardly any support or
wizard functionality which would support the user during her task to provide
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new knowledge to the information system. To the best of our knowledge the
SnoopyConcept presented in Chapter 3 was the first approach which aims at
using this powerful resource of knowledge [61, 60].

A very similar approach named “property suggestor” was introduced in 2014
in the Wikidata platform (cf. Section 2.2.3) to assist the user in entering in-
formation by providing suggestions for novel properties. This tool which is
discussed in more detail in Section 5.4 is based on the Predicate Suggestion
approach by Abedjan and Naumann which aims at enriching RDF datasets
by a set of rule mining approaches [3, 2]. The approach uses FP-growth [69]
to find patterns and distinguishes between subject mining, predicate mining,
and object mining. Subject mining aims at finding similar subjects and rules
like George Washington → Lyndon B. Johnson by analyzing the used predi-
cates. If subjects share the same predicates it is more likely that the describe
similar things, e.g., persons or presidents. Predicate mining uses this informa-
tion of predicates which occur together on subjects, to generate rules such as
{associatedBand, instrument} → associatedMusicalArtist. Such rules identify
co-occurrence patterns which can be subsequently used for recommendations.
The last type of mining patterns analyses the co-occurrence of objects and
construct rules like Buenos Aires → Argentina if they are frequently stored
in the same subject. For the recommendation process proposed in [3], the
predicate and object mining is taken into account. The computation of the
predicate computing recommendations, the approach uses a two-dimensional
predicate to predicate matrix including the association rule confidence values
which are finally added up to generate a ranking score. This ranking strategy
is equal to a SnoopyConcept ranking strategy described in Section 3.4.3 which
would only consider the confidence value for ranking. The authors showed
that the approach was able to reconstruct randomly removed predicates in a
DBpedia dataset with a precision up to 64% at 5 recommendations. In com-
parison to the SnoopyConcept the approach proposes a very basic ranking
algorithm. We extended the proposed algorithm by applying SnoopyConcept
ranking strategies (cf. Section 3.4 and 3.5) and conducted an evaluation of
the extended algorithm [184]. In Section 6.1.2 the evaluation results prove
that the enrichment by context, as proposed in the SnoopyConcept, signifi-
cantly increases the accuracy of the recommendations. More details about the
approach and its improvement can be found in Section 5.4.

The concept of incorporating the user already during the insertion process is
still a very unexplored research area and not widely used in information sys-
tems. Nevertheless, the presented work and the fact that Wikidata introduced
the “property suggestor” are strong indicators that the user has become more
important during the insertion process and thus, is incorporated to increase
the quality and quantity of knowledge stored in a semi-structured information
system.
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2.5 Database Models

The presented SnoopyConcept and its recommendation algorithms are inde-
pendent of the underlying storage technology. We proposed three models in
Section 5 to implement the SnoopyConcept. In this section we introduce the
underlying database models, namely, relational databases, document-oriented
databases and graph databases.

2.5.1 Relational Database Systems

Relational Database Systems are based on the Relational Model which was
introduced by Codd in 1970 [42]. Despite the old age of this model it is still
the most popular database model and has a long tradition in the database
ecosystem. In the DB-Engines database model ranking which can be seen in
Figure 2.5 the Relational Model has still an popularity score of over 80%. The
score is calculated by measuring mentions on web-pages, entries in discussion
forums, number of job offers and mentions in professional social networks
such as LinkedIn22. As this measurements might have a bias towards modern
new movements which are more present on the internet in contrast to older
mature systems it is even more outstanding that this model reaches such a
high popularity score.

Figure 2.5: Ranking scores per database model, popularity measures based on
internet information retrieval methods, Source: DB-Engines.com, Jun 2017

The Relational Model stores information in mathematical relations which are
connected by relationships. Every relation conforms to a predefined schema.

22http://www.linkedin.com, accessed 2017-07-17
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Popular representatives are Oracle23, DB224, Microsoft SQL-Server25 and
MySQL26. The Relational Model is strongly connected with the Structured
Query Language (SQL). The quasi-standard to query information stored in a
Relational Database System is also used to create schemata and data. The
declarative language is very flexible and allows to create filtered, aggregated
and converted views of the stored data in the database system. It is easy
to learn and thus, is also very popular with non-developers such as manage-
ment or controlling staff. SQL can be seen as figurehead of relational systems
and therefore, is also used in the name of the biggest counter-movement of
relational systems—NoSQL—which is described in the following section.

2.5.2 NoSQL: Document-oriented Stores

In contrast to the Relational Model the term NoSQL does not describe a model
but stands for a big movement which has been increased dramatically within
the last years. The term which is an abbreviation for “Not only SQL” is used
for many different models and systems which want to break the traditional
monolithic database design of relational database systems. Stonebraker et al.
argued already in 2007 [157] that the era of “one size fits all” databases is
over and more specialized data storage engines which are tailored for specific
use cases will evolve. Especially NoSQL databases try to sacrifice unnecessary
features to get other advantages in return. For example, the softening of
consistency constraints simplifies the distribution and thus, enables scalability
related features.

One of the most stated model behind the NoSQL movement is the so called
Key-Value Store. It is a database system which stores arbitrary values un-
der a corresponding unique key which can be compared to a primary key in
the relational model. The type of the value is not specified in detail and can
feature any binary format such as an integer, string or an image. Document-
oriented Stores are extended Key-Value Stores which store documents which
are identified by unique keys. Documents are values which feature a struc-
ture. A document is similar to a tuple in the relational model which is as
well identified by a unique key. The big difference is that the structure of a
document is not specified in advance. A document consists of any arbitrary

23https://www.oracle.com/database, accessed 2017-07-17

24http://www.ibm.com/db2, accessed 2017-07-17

25https://www.microsoft.com/sql-server, accessed 2017-07-17

26http://www.mysql.org, accessed 2017-07-17
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fields which can be further structured to build complex structured hierarchies
within a document.

Widely used representatives of document-oriented stores are for example Mon-
goDB27, CouchDB28 and the full text search focused system ElasticSearch29.
One big difference to traditional databases such as Oracle or DB2 is the sim-
plified handling and maintenance of NoSQL databases. The NoSQL databases
are easy to install, run out of the box and do not need any additional tweak-
ing or tuning for most use cases. This simplification was also one reason
for the great success of these alternative databases and is also mentioned as
“no knobs” by Stonebraker et al. [157]. Furthermore, most of the NoSQL
databases and all three named document-oriented databases do not comply
to all ACID properties. They soften the ACID properties and guarantee only
eventual consistency which is often classified as providing BASE (Basically
Available, Soft state, Eventual consistency) [134]. This is one key factor to
enable good scalability which is provided by most of the document-oriented
stores. As consistency would result in an synchronous update mechanism of
all replicas in the cluster and thus, a high latency with all writes, the only
way to achieve low latency writes in distributed systems is to soften the con-
sistency guarantee. Furthermore, document-oriented systems hold all data of
one document physically together. Relational systems store all information
about one “document” normalized and distributed over several tables. This
approach reduces the amount of needed disk space but increase the complex-
ity when retrieving data in a distributed environment due to the fact that the
data has to be fetched and merged from different tables using a distributed
join. Distributed joins are very inefficient as a lot of data has to be send over
the network [50]. Most document-oriented stores do not support joins at all
related information is stored together in one document.

These two big differences to relational systems—the document-oriented model
and eventual consistency—provide the basis for distributed high-performance
systems and enable a very important feature, scalability. Especially in the field
of web oriented systems, scalability is often more important that consistency.
Most of these systems do not deal with critical data such as bank account data
but have high demand on scalability due to the nature of web growth. For
such web projects which expect a very fast growth it can be seen that “one
size fits all” no longer holds and more specialized databases are needed.

27http://www.mongodb.com, accessed 2017-07-17

28couchdb.apache.org, accessed 2017-07-17

29http://www.elasticsearch.com, accessed 2017-07-17
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Another class of NoSQL systems that is described in the next section is “graph
based stores” which offers the support of relations to connect information.

2.5.3 NoSQL: Graph Stores

Graph stores are often mentioned as a subclass of the new NoSQL move-
ment. New graph stores can be classified like this, nevertheless, databases
based on a graph model were already introduced in the 1960s. One of the
first databases was IDS developed by Charles Bachman [16] who received the
Turing Award 1973. The goal of the IDS system was to provide a unified
storage system for all systems at General Electric. The outcome was IDS
which used a network model to store data. In contrast to the hierarchical
model which is more restrictive the network model allows to connect objects
by arbitrary relationships—and thus, forms a graph. Due to limitations re-
garding the query facilities and the strong coupling between physical storage
and processing of data the relational model took over in the late 1970s [42]. In
the 1990s object oriented databases—another type of graph databases—had
evolved as the object oriented paradigm had become more popular [44, 105,
12]. Also more sophisticated graph based model such as the Hypergraph and
the Hypernode model [106, 131] where introduced. It allows nested graphs
to encapsulate data and is still used in new graph based database systems.
Nevertheless, object oriented systems did not become generally accepted and
the relational model has been mainly used until now. However, within the last
decade the graph model has become more important again due to the nature
of mass collaborative created content and network based data in the internet.
Especially social media and linked data stimulate the development of graph
based databases and revive the very traditional data model. Nowadays, most
modern graph databases implement a variation of the Hypernode model or
use the RDF model which are both described in the following section.

Hypernode/Property Graph Model

The basic mathematical model of a graph is defined as follows: an ordered
pair G = (V,E) comprising a set of nodes/vertices V = {1, 2, . . . , n}, a set of
edges E = {(u, v) ∈ {V ×V }}. Consequently, nodes can be connected by more
than one edge provided that different edges are used. Moreover the definition
also allows recursive edges between a single node.

A Hypergraph is a generalization of the basic graph in which an edge can
consist of an arbitrary number of nodes. Formally it is defined as a pair
H = (V,E) where V is a set of nodes/vertices and E is a set of non-empty
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University of

Innsbruck

Austria

27,439

16

1669

Europe

locatedIn

country
numberOfFaculties

established

numberOfstudent

Figure 2.6: Example of a RDF subject University of Innsbruck

subsets of E called hyperedges. An extension of this definition is the definition
of Hypernodes [131] which defines that every node can consist of a nested
subgraph. A related graph model is the property graph model which is used
for example in Neo4j30. It is similar to the Hypernode model as it allows
additional information on nodes and edges in the graph. In the property
graph model additional information is represented as key-value pairs which
can be attached to nodes and edges.

RDF Graph Model

The resource description framework (RDF) [104] enables to store information
about a certain subject as property-value pairs, e.g. the number of students at
a certain university could be stored as numberOfStudents: 20.000. One such
fact is called Triple as it consists of (subject, predicate, object). Subjects and
predicates are usually specified by using URIs to uniquely identify them. The
object can be a literal or a URI to link to another resource. By applying this
simple structure every arbitrary graph structure can be represented. Due to
its simplicity and flexibility it has become the de facto standard to represent
knowledge.

Information about the University of Innsbruck could be structured using RDF
as shown in Table 2.2 or respectively in Figure 2.6. Considering the node
Austria, another important feature of graphs and RDF is shown. The node
which is used as an object connected via the property country, contains further

30https://neo4j.com/developer/graph-database/#property-graph, accessed 2017-07-17
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connections and therefore, acts as a subject as well. Thus, nodes can be reused
and be connected in any arbitrary way.

University of Innsbruck

country Austria
numberOfStudents 27,439
numberOfFaculties 16
established 1669

Table 2.2: Example of a subject

By using such triples to represent information, all information stored is
machine-readable and therefore can e.g. further be used for automatic rea-
soning tasks and complex structured search facilities. To query RDF data the
query language SPARQL [135] has become widely used and is supported by
many graph databases. RDF is also used in the Snoopy Concept which is
explained in more detail in the following chapter.

2.6 Summary

In this chapter we discussed and introduced related work and technologies used
throughout the course of this thesis. The first section consists of an introduc-
tion to knowledge representation and the semi-structured format which is used
by the SnoopyConcept. Challenges in the area of mass-collaborative curation
of knowledge using the example of wiki systems and knowledge bases are dis-
cussed in the second section. Especially the goals of the SnoopyConcept, a
simplified editing process, the navigation in the dataset, and the maintenance
of a homogeneous structure are covered. As the SnoopyConcept leverages
recommender systems to tackle those challenges, we subsequently, introduce
recommender systems in the fourth section. The very young field of research
of recommender systems in the area of information systems is presented in
the fifth section. The last section is dedicated to database models that can
be used as an underlying basis for all presented SnoopyConcept storage ap-
proaches and concepts. In the following chapter we present the SnoopyConcept
and its algorithms.

44



CHAPTER 3

The SnoopyConcept

There are many approaches which aim at increasing the quality and quantity
of knowledge in an information systems. The majority of these approaches en-
hance the stored knowledge after it was entered into the information system.
This is a complex task especially when dealing with semantic enhancement.
In this section, we introduce the SnoopyConcept which aims at increasing the
quality and quantity of knowledge by incorporating the user who inserts data
to the information system. The concept exploits the knowledge of the user and
tries to “snoop” as much information as possible. This incorporation of the
user already at an early stage increases the quantity of information while de-
creases the heterogeneity of structure to increase the search capabilities of the
information system. The foundation and the benefits of the SnoopyConcept
are discussed in the following sections.

3.1 Key Idea: Incorporate the User

Considering a domain expert who inserts new knowledge to an information
system, it is highly important to facilitate direct communication with her
already during the insertion process to exploit her expertise in the respective
domain. Take the example of a user who inserts information about the iPhone
mobile phone into a semi-structured information system as shown in Table 3.1.
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All three entered entries are not complete and require further refinement to be
understood by a computer. The first problem arises with the term “handy”
which is only used by German speaking people and is used as a synonym for
“mobile phone”. The second line “weight” does not contain any information
about the unit, such as grams, ounces, kilos, etc. The last property about the
manufacturer is specified as “apple”.

iPhone

type handy
weight 135
manufacturer apple

Table 3.1: Example of a set of information about the iPhone

The task of completing all information or enhancing the information to more
distinguishable facts which could lead to the enriched entry shown in Table 3.2
is very trivial for a human being. The common inference rules that 135 kilos or
ounces is to heavy for a mobile phone, the manufacturer cannot be a fruit and
the knowledge that “handy” is a mobile phone are obvious for human beings.
These obvious rules are very trivial although a computer system which is able
to solve these problems would be considered as very smart (cf. [113]). If we
consider a more complex example, e.g. by inserting information about the
recently discovered 14th moon of Pluto, the task becomes even harder for
human beings and terribly difficult for computer systems.

iPhone

type mobile phone
weight 135g
manufacturer Apple Inc.

Table 3.2: Guided version of the iPhone entry

The SnoopyConcept aims at solving these problems by identifying missing se-
mantic information at an early stage and consulting the person who probably
has the most extensive knowledge about the entry which is currently inserted
— the user herself. The following three simple questions asked by the infor-
mation system may lead to a completed and enriched entry which can be used
for further automatic processing by computer systems:

• Many other people used type:mobile phone... are you sure about the
term handy?
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• Other users used gram, ounces or tons for their property weight. Which
unit do you want to use?

• We found two other entries in the system: Apple Inc. and Apple

(Fruit). Do you want to link the property manufacturer to one of
them?

There is no automatic process which is able to offer the same or better per-
formance than the user itself when dealing with semantic issues such as the
meaning of the entered value Apple. Thus, the key idea of the SnoopyCon-
cept is to exploit the knowledge of the collaborating users already during the
insertion process—just a few clicks for the user but a really time-consuming
task for the community (cf. Section 2.2) and a even more difficult task for a
computer system.

Another goal of the SnoopyConcept is to support the users in the creation of
a common, homogeneous structure. The task of maintaining a homogeneous
structure in an information system is very demanding. Boulain et al. [26]
showed that only 35% of all edits within Wikipedia are related to content,
whereas all other edits aim at enhancing the structure within the Wikipedia
knowledge base. Additionally, Wu and Weld [179] showed that infoboxes which
adhere to predefined templates are nevertheless divergent and noisy. The
SnoopyConcept aims at coping with this problem by incorporating the user
into the structure alignment process. This is realized by suggesting highly
suitable structures to the user during the insertion process. Consider again
the example of inserting information about Kerberos, a moon of Pluto which
was discovered 2011. Assume that the user already inserted the information
that Kerberos is a satellite of Pluto as shown in Table 3.3.

Kerberos
Satellite of Pluto

Table 3.3: User just started to insert information about the moon Kerberos

The entered triple is already sufficient to compute other highly suitable at-
tributes which can be suggested to the user. For example the properties “Dis-
covered by”, “Discovery date”, “Named after”, “Orbital period” or “Apparent
magnitude” are recommended to the user as shown in Table 3.4. The user is
not tempted to introduce new properties or structured to describe the moon as
she has only to choose suitable properties from the recommendation list. If the
user does not retrieve any recommendations she could introduce synonymous
properties, such as “Discoverer” or“Discovered on”, which would introduce
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new structures that decrease the homogeneity and thus, impede the search
capabilities.

Kerberos
Satellite of Pluto

Recommendations for Kerberos
Discovered by Example: Douglas Adams

Discovery date Example: February 18, 1930

Orbital period Example: 90465 days

Named after Example: Fritz Important

Apparent magnitude Example: 26.1 +/– 0.3

Known satellites Example: 5

Table 3.4: Recommended properties based on Table 3.3

The user has to analyze and recognize all recommendations and has to decide
if the suggestion is useful in the current context. This recognition is sped up by
example values as they help to illustrate the context and type of the property.
Consider the example of the property “Known satellites” for e.g., describing
planets. If the user chooses to insert information about the satellites she may
insert the total amount of satellites but may also insert a comma separated list
of names of the satellites which would break a common structure. Therefore,
the example value “5” is necessary to help the user to understand the meaning
and type of the property “Known satellites” as fast as possible and prevent
type-conflicts in the system.

Resource

(Insertion Form)

Insert

Recommendation 

Computation

Recommendations / 

Refinements

External Sources

SnoopyConcept Workflow

Semistructured 

Knowledge Base

Figure 3.1: SnoopyConcept workflow of curating knowledge

Summarized, the SnoopyConcept enables the user to insert information as
simple and efficient as possible. More precisely, the SnoopyConcept exploits
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the laziness of the user who retrieves suitable recommendations and therefore,
does not need to invest in additional considerations about the structure. By
using this user-centric insertion approach, which is also sketched in Figure 3.1,
the following benefits can be achieved:

• Avoid proliferation of structures (cf. Section 3.3.1)

• Avoid synonyms in the system (cf. Section 3.3.2)

• Semantic refinement by resolving homonyms (cf. Section 3.3.3)

• Exploit user’s extensive and valuable knowledge (cf. Section 3.3)

• Increase the quantity of information contained in the system (cf. Sec-
tion 3.3.1)

• Increase the quality of information in the system (cf. Section 3.3)

All recommendations aim at supporting the user, exploiting the knowledge
of the user and therefore “snooping” as much information as possible. Thus,
the quantity and quality of stored information is increased. The underlying
measures and approaches of the SnoopyConcept enabling these benefits are
discussed in the following section. The algorithms are explained in detail in
Section 3.4.

3.2 Data Model

The SnoopyConcept is based on the semi-structured data model. Essentially,
the SnoopyConcept proposes to model information and knowledge as subject-
property-value triples which is based on the concept of RDF [104]. This format
enables users to store information about a certain subject as property-value
pairs, e.g., the number of students at a certain university can be stored as
numberOfStudents: 20.000. Storing information about a certain subject (also
called resource in RDF or article in the context of wikis), e.g. the University
of Innsbruck, could be structured as shown in Table 3.5.

By using such triples to represent information, all information stored is
machine-readable and therefore can e.g., further be used for automatic reason-
ing tasks and complex structured search facilities. Furthermore, as the data
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University of Innsbruck

country Austria
numberOfStudents 27,439
numberOfFaculties 16
established 1669

Table 3.5: Example of a subject

model is compatible to the RDF model, the data can be exported as valid
RDF at any time and ensure high interoperability with other systems.

3.3 Recommendations

The key enabler for the described benefits within a knowledge repository based
on the SnoopyConcept is a recommender system [138]. Essentially, a recom-
mender system analyses all information stored within the system to subse-
quently provide its users with useful recommendations. Traditionally, recom-
mender systems are used in online shops where clients are pointed to further
products (cf. Section 2.3).

In the context of the SnoopyConcept, the recommender system suggests suit-
able structures the user might want to use (cf. Table 3.4 in Section 3.1). Also,
not only properties (structures) are recommended to the user. The Snoopy-
Concept also proposes to recommend values, links, types, input formats and
other refinements to the user. These recommendation types and their benefits
are described in detail in the next sections.

3.3.1 Recommending Structure

The term of structure recommendations refers to the recommendation of ad-
ditional properties during the insertion process and is the most important
feature of the SnoopyConcept as it significantly contributes to a common and
homogeneous schema within the system. We propose an additional ranking
mechanism to ensure that more popular or more suitable properties are pre-
ferred in the list of recommendations in order to efficiently use the limited
visual space in a user interface and cope with the limited cognition of the
user. The ranking algorithm is described in detail in Section 3.3.5.
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These recommendations are computed on the fly and are based on the just
entered properties by the user and all already used properties in the knowledge
base. Any additional specified property or accepted property recommendation
during the insertion process results in the recomputation and refinement of all
structure recommendations for the current subject.

In contrast to classical fixed-schema information systems, the common schemata
in a SnoopyConcept enabled system are very dynamic, as they are based on
all stored subjects and therefore, are influenced by every newly stored subject
and its properties. Every newly stored property is automatically taken into
the set of possible property recommendations and can influence further rec-
ommendations to other users who want to enter information about a similar
subject. The similarity of subjects is solely defined by the properties used
on these subjects, as subjects do not feature an explicit, predefined type or
schema (e.g., the type “University” or “Building”). The type of a subject is
rather solely defined by its properties and hence, the type or category system
within Snoopy is neither predefined nor rigid. Instead, the implicit, contin-
uously changing types within Snoopy are dynamically computed based on
the information/properties stored about a subject. Such an approach is also
widely used for classification or object identification in the domain of schema-
less data such as Linked Open Data [125]. In this domain of schemaless data,
the analysis of structures is used to identify and reconciliate objects or find
similar objects of the same type.

Due to this described flexibility and the fact that users are free to modify
the recommended structure, the system cannot guarantee a completely uni-
fied and aligned schema. Nevertheless, the user is guided to a common schema
without restricting her in her way of structuring information or extending ex-
isting schemata. Therefore, in the best case, the SnoopyConcept does not
require any schema matching [153] after the insertion of data. The alignment
is done implicitly during the insertion process by the user with her extensive
knowledge. The user is always more powerful than any automated alignment
algorithm as the algorithm do not have all the information that is available
to the user (e.g. interlinked information that is stored in the human brain).
Furthermore, in the case of multiple semantically similar properties which are
all used within the system, the community decides which one is more appro-
priate by using the according property and hence, ‘voting’ for the property.
This way, a property becomes more popular, gets recommended and hence,
used.

Furthermore, the recommendation of structure increases the quantity of in-
formation as the recommendations indicate “missing” bits of information and
ease the input of new information. In the mentioned example of the domain
of universities, the system could recommend the property rector. By pro-
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viding such additional property recommendations, the user is encouraged to
enter more information than she originally intended to insert and the valuable
knowledge of the user is once more exploited. Such information gathered by
the “snooping”-process would be lost without recommendations and cannot be
completed by any machine afterwards and therefore enhance the information
system dramatically.

All details about the recommendation algorithm can be found in Section 3.4.

3.3.2 Avoiding Synonyms by Recommendations

The usage of synonyms is severe challenge in semi-structured information sys-
tems as they are able to dramatically decrease the search capabilities of the
information system (cf. Section 2.4.1). The SnoopyConcept tackles this issue
by applying the following recommendation procedure. During the specification
of further content, the user is supported by an intelligent auto-completion fea-
ture. The system suggests suitable properties to the user which have already
been used within the information system. Consider a user who started en-
tering the property number. The system subsequently suggests all previously
used properties in the system which are related to the term number. In this
case, the system would suggest numberOfStudents and numberOfFaculties. In
most cases the user accepts such a recommended property if it is suitable in
the respective context. In this example, the user would implicitly be prevented
to insert a new synonymous property, such as numberFaculties. A more se-
vere challenge in information systems lies in coping with syntactically different
synonyms as it cannot be solved by string-based matching approaches. Con-
sider the example of a user entering Faculty, a string based matching approach
would not recommend the already entered property Academic Staff. By using a
thesaurus, Faculty can be matched with the semantically equivalent, already
existent property Academic Staff which can then be suggested to the user.
This approach is heavily dependent on the quality of the thesaurus. Espe-
cially in very broad information systems or frequently changing domains, it is
very difficult to find a appropriate thesauri. Novel developments that extract
thesauri from public community maintained sources such as Wikipedia [118,
123, 80] may help to cope with this problem. Regardless of the used tech-
nologies, the list of auto completion recommendations may be very long, e.g,
there are over 400 properties in the DBpedia dataset that contain the sub-
string number. To increase the accuracy of recommendations, the set of auto
completion suggestions can be filtered and ranked by applying the current
context of the subject similar to the approach of structure recommendations
explained in the previous Section 3.3.1. For example if the property rector was
already inserted to the subject, the properties numberOfStudents and num-
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berOfFaculties are more appropriate than the property numberOfMoons which
can be achieved by analyzing similar subjects that contain the property rector.
The procedure can be implemented analogous to the approach in Section 3.3.1
which is described in detail in Section 3.4.

3.3.3 Semantic Refinement and Value Recommendations

The guidance of the user is not limited to properties, also possible values
can be suggested. This mechanism features the advantage of providing the
user with values in an already aligned form, which prevents the user from
entering synonyms of already existing values. This can be achieved by using
the same mechanisms used for the recommendation of properties previously
described.

In contrast to properties that are present in a common dictionary, values often
contain proper names or strings which cannot be found in a dictionary. To
prevent typos and misspellings in this context, the recommendation of already
present values is crucial as the usage of a dictionary can solve this problem
only partially.

Furthermore, not only the value itself can be recommended, but the system
can additionally suggest semantic links between values and other subjects.
This measure copes with the common challenge of preserving semantic “cor-
rectness” of homonyms. If the user e.g., specifies the city of Freiburg as a twin
city of Innsbruck, it is not clear whether the user refers to Freiburg in Ger-
many or Freiburg in Switzerland. Within the SnoopyConcept, this problem
is resolved by recommending possible semantic links from the entered value
Freiburg to already existent, semantically equivalent subjects (e.g., Freiburg,
Germany and Freiburg, Switzerland). The user is then able to specify the
meaning just by accepting the appropriate recommendation and therefore,
add more contextual information to the entry by creating a semantic link to
the respective subject. As the user has extensive knowledge about the content
to be inserted, she can provide more semantic information than any automated
extraction process can do afterwards. Even if the user is not aware of ambigu-
ities (e.g. the second city Freiburg) she is pointed to the ambiguity-problem
and should be able to make a correct decision by already present knowledge
or by considering external sources. Using these measures, homonyms are fur-
ther semantically enhanced by humans, which leads to a high confidence of
semantic data in the system.
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3.3.4 Validation and Recommendations of Data Types

The SnoopyConcept also proposes to extend the analysis of values in the in-
formation system by a validation process, which includes determining a data
type for each newly entered value, e.g., the value for the property numberOf-
Students is asserted to be an integer value. Vice versa, if a property is added
that already exists, has a data type assigned due to the usage of this data type
by the majority of other property instances, the user is prompted to enter val-
ues according to this data type. As already explained in the previous sections,
displaying example values indicates the correct or often used data type and
avoids incorrect data types at an early stage. The detection of data types, es-
pecially in the case of numeric types, is also very important regarding search
capabilities as it is crucial for queries based on numeric evaluation. E.g., the
query “List all universities having more than 10,000 students” is only possible
if the value of the property numberOfStudents is stored as a numeric value.
Furthermore, also other data types like e.g. date, time, HTML, file, image,
audio or video are possible and lead to special behavior in the user-interface
according to the data type (e.g., date picker, calendar views, content-based
image search, mp3 metadata search, etc.). Additionally, the syntactic cor-
rectness is validated according to the respective data type (e.g., correct date
format).

All these measures enable the user to enter information fast and efficiently by
just accepting recommendations while at the same time additional, semanti-
cally equivalent properties and values are avoided. Furthermore, the amount
of unified information, the confidence and the amount of semantic data in the
system are increased.

3.3.5 Ranking

Due to the fact that both the cognition of the user and the space available
for displaying the recommendations are limited, the size of the set of recom-
mended properties is restricted. In most cases a set of 5–10 recommendations
is most appropriate which also corresponds to the capacity of short-term mem-
ory [115] and furthermore, can be perceived very quickly in a user interface.
The problem of choice overload has also been addressed by Bollen et al. [25]
who state that top-5 recommendations are easy to choose from by the user.
The goal of the ranking algorithm is to push the most suitable recommen-
dations out of the (probably large) set of recommendation candidates to the
limited list of suggestions which are actually shown to the user. To achieve this
task, the ranking algorithm has to take multiple impact factors into account
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which influence the suitability of each recommendation candidate in the given
context.

The most important influence factor is the confidence of the recommended
item, which defines how suitable the recommended property is in the current
context based on data already stored in the system. The context may consists
of multiple dimensions, such as the already inserted information of the subject
by the user, the user herself respectively the user’s profile, and the collected
data about the user.

Also the usage behavior of the property itself has to be considered by the
algorithm. For example if only the popularity of a property is taken into
account, novel properties will not be recommended due to the rare usage rate in
the information system (cf. Section 2.4.1). Therefore, to overcome the “chicken
or the egg dilemma” the SnoopyConcept proposes to randomly recommend
novel properties to increase the probability to be chosen by the user. The
concept of serendipity is well know, for example Bono [47] proposed the “lateral
thinking” to avoid selective and sequential thinking, but accept accidental
aspects, that seem not to have relevance or simply are not sought for. Within
the last years, serendipity has become also more important in recommender
systems to escape the filter bubble [163] and discover new elements [190, 82].

This usage behavior can be further analyzed and a potential popularity-rise
of properties may indicate the importance of a property. Consider the ex-
ample of an information system about cars. 20 years ago the information
about the fuel economy and CO2 emissions of motor vehicles were not very
common. Nowadays, such information is very common and even required by
law. For example, the rise in popularity a property about the CO2 emissions
which could become very important and popular after a new legislation, is
potentially recognized by an intelligent information system and can be used
in recommendations at an early stage to point user to this new very popular
but missing piece of information.

The detailed ranking algorithm of the SnoopyConcept can be found in Sec-
tion 3.4.2. In the following section, the technical implementation of all recom-
mendation algorithms of the SnoopyConcept is described in detail.

3.4 Recommendation Algorithm

In this section we discuss the algorithms that are used to recommend suitable
structures to the user as previously described. The basic algorithm of the
SnoopyConcept is based on an association rule approach [7, 8], which was
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adapted for the mining of relations between properties. Association rules are
used to compute so called frequent item sets which were originally used in
the area of business intelligence to find items which are frequently bought
together. Formally, to compute a frequent itemset we define the set of all
items in our database I = {i1, i2, ..., in} and the set of all transactions T =
{T1, T2, ..., Tm}. An arbitrary transaction Tk ⊆ I contains a subset of all items
in I and represents a shopping basket of a customer. Based on this transaction
database, the goal is to calculate association rules which are implications X →
Y , where X and Y are subsets of I, and X and Y do not have any items in
common (X ∩ Y = ∅). If a transaction confirms to a rule X → Y , X and
Y are contained in the transaction T - respectively are found together in one
shopping basket and therefore, are bought together. Consider the example
rule diapers, nuts → beer which indicates that a customer who has diapers
and nuts in his basket is going to take beer as well (there are different opinions
about the truthfulness of this example in reality [132]).

Finding truthful association rules is a very demanding task, as the number of
potential rules corresponds to the number of all permutations of articles in all
transactions/baskets. All potential rules have to be checked for their accuracy
thus, are valid in as many transactions as possible. Most business cases define
a minimum support of rules to decrease the amount of useful rules and reduce
the rule space which has to be analyzed.

The approach based on association rules can be easily mapped to the recom-
mendation problem of the SnoopyConcept and is described in the following
section.

3.4.1 Basic Recommendation Algorithm

The basic recommendation algorithm of the SnoopyConcept is deduced from
the concept of association rules as described in the previous section and is
defined as follows. Considering the item set I = {p1, p2, ..., pn} consists of all
properties occurring in the Snoopy system and a transaction sj ⊆ I comprises
all properties occurring together within the subject sj . The set of all subjects
forms the transaction database S = {s1, s2, ..., sm}. Based on this transaction
database, the goal is to calculate association rules which are implications X →
Y , where X is a property and Y is another property which co-occurs with X
on the same subject. Due to performance reasons (cf. Chapter 5), the head
X and tail Y of all rules consist of exactly one property in contrast to the
original set-based definition of association rules [7]. This constraint reduces
the complexity, the amount of permutations and therefore, allows a simplified
and fast computation of rules.
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Algorithm 1 is based on the described association rule approach above and
shows the generation of the set R consisting of all rules in the form of (pa, pb, c)
with the head property pa, the tail property pb and an additional counter c
which indicates the number of subjects which support the respective rule. If a
user e.g. specified the properties name, location and numberOfStudents on
the same subject, the pairs (name, location), (name, numberOfStudents) and
(location, numberOfStudents) are formed. If the same property is specified
multiple times in the same subject—for example when specifying lists—the
property is only considered once respectively, the support value is not influ-
enced by multiple occurrences of the same property in one subject. Due to
performance issues regarding the search of rules, every rule is stored directed
and therefore, is stored in the system twice in different order. Thus, the ruleset
R contains the rule (pa, pb, c) and the reversed rule (pb, pa, c).

Input: set S of all subjects
Output: set R of rules

1 R ← ∅
2 foreach sj ∈ S do
3 foreach pk ∈ sj do
4 foreach pl ∈ sj do
5 if (pk 6= pl) then
6 f ← false
7 foreach (pa, pb, c) ∈ R do
8 if (pa = pk ∧ pb = pl) then
9 R ← R \ {(pa, pb, c)}

10 R ← R∪ {(pa, pb, c+ 1)}
11 f ← true

12 end

13 end
14 if (f = false) then
15 R ← R∪ {(pk, pl, 1)}
16 end

17 end

18 end

19 end

20 end
21 return R

Algorithm 1: Computation of recommendation rules

The goal of the basic recommendation algorithm of the SnoopyConcept is to
compute further suitable properties for an arbitrary subject which already
contains some properties based on frequently used patterns. Classical associa-
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tion rule based mining algorithms such as the Apriori [7, 8] or FP-growth [69]
algorithm try to find the most used patterns and do not consider rarely used
rules or rules which show a very low support. Such an approach is opti-
mized for the domain of business intelligence and data warehousing but is
not suitable for the SnoopyConcept as recommendations of structures have
to be present also for infrequently maintained subjects or a very specialized
topic which consists of only few subjects. Consider the information of moons
of Pluto stored in Wikipedia. Only a few articles respectively subjects are
stored in the system which contain information about this topic. Even in this
low-frequent-changing area a recommender system has to be able to suggest
suitable structures. Due to performance reasons most classical association
rule based mining algorithms ask for support and confidence thresholds and
therefore are not able to consider this low-frequent-changing area.

Another very important property of a recommender system is the accuracy.
In contrast to the classical field of application of association rule based min-
ing algorithms such as retail, the accuracy of online recommender systems is
directly related to the dynamics of a recommender system. The online rec-
ommender system has to reflect a user’s recent activity to keep a very high
accuracy of recommendations [181, 46]. Consider the video sharing platform
YouTube and the user who is watching videos. It is crucial that the recom-
mender systems take the recent activity of the user into account [46]. This
can be achieved by adapting the user’s profile by adding watched videos. This
interference is taking place in user profiles only and does not change any rec-
ommendation/association rules on the fly. Therefore, the real time adaption
of the recommender system is achieved by small and fast changes on the user
profiles. The complex and very expensive task of updating association rules
can be realized in the background or regularly every night by analyzing e.g.,
all log data [46].

There are however other use cases which place higher demands on the update
performance of the recommender system. Consider a photo tagging platform
(cf. SnoopyTagging in Section 5.2) and a user who tags photos in the system.
If the user introduces a new tag, the user will expect that the recommender
systems considered her new tag and will recommend the respective tag when
tagging the next photo. It is imperative that the recommender systems ex-
ecutes updates in real time and considers new tags immediately in this use
case. Thus, to be up to date, the recommender system has to adapt not only
the user profiles but also has to consider the behavior of all users and update
the association rules by incorporating the behavior in real time or near real
time.

Especially when considering mass-collaboration systems, the real-time com-
putation of association rules cannot be executed within reasonable time as
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the computation of all rules in a very large system is very expensive. An
alternative to the recomputation of all rules (full-update) is the incremen-
tal computation of rules based on updates in the system. Depending on the
real-time demands of the use case, the incremental adaptions of rules can be
computed asynchronously and thus, can be executed whenever computational
resource power is available. For example, YouTube analyzes log files to adapt
their recommender systems [46] regularly. When considering the presented
SnoopyConcept approach, an incremental update mechanism of the recom-
mender system can exploit the simple form of the used association rule format
which consists of one property in the head part and one property in the tail
part of a rule. Algorithm 2 shows an incremental update algorithm based on
the presented rule approach.

Input: set R of rules, properties PSi of edited subject Si, updated
property pu, update type typeu (removed or added)

Output: updated set Rnew of rules
1 Rnew ← R
2 foreach pk ∈ PSi do
3 found← 0
4 foreach (head, tail, c) ∈ Rnew do
5 if (head = pk ∧ tail = pu ∨ head = pu ∧ tail = pk) then
6 found← 1
7 Rnew = Rnew \ (head, tail, c)
8 if typeu = removed ∧ c 6= 1 then
9 Rnew = Rnew ∪ {(head, tail, c− 1)}

10 end
11 if typeu = added then
12 Rnew = Rnew ∪ {(head, tail, c+ 1)}
13 end

14 end

15 end
16 if typeu = added ∧ found = 0 then
17 Rnew = Rnew ∪ {(pk, pu, 1), (pu, pk, 1)}
18 end

19 end
20 return Rnew

Algorithm 2: Incremental computation of recommendation rules based
on updates in a SnoopyConcept based system

To implement the incremental update two different cases have to be considered—
namely the addition of a new property which was not already used in the
subject and the removal of a property that is no longer used in the subject.
The decision which procedure has to be executed can be made locally by only
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taking the properties of the edited subject into account. Also the next step,
the increase or decrease command (line 9 or 12) can be generated locally.
These increase and decrease commands can be stored to be processed at a
later point in time. All stored commands can be processed in a batch-like job
regularly when the system is not under heavy load. It is also possible to group
all update commands by the rule and thus, decrease the number of update
statements on the large rule set. Due to this incremental update algorithm
which can also be executed asynchronously, the recommender system can be
realized as a near real time system. This real time behavior is very important
as the accuracy of recommender systems is strongly connected with the accep-
tance of recommender systems by the users. Users explore recommendations
to test how the recommender systems behave and evaluate if the recommen-
dations are “useful” for them [75]. Therefore, it is very important to build
trust by incorporating the user’s behavior and demonstrate to the user that
the recommender system adapts to the user’s needs [41].

The design of the basic algorithm of the SnoopyConcept which is described in
the following part tries to consider all previously discussed properties of rec-
ommender systems and provides highest flexibility regarding real time adap-
tions and computability to satisfy the requirements of real-time scenarios as
described above.

Algorithm 3 shows the basic step of the basic SnoopyConcept recommenda-
tion algorithm to compute the recommendation candidates. The input for
this algorithm consists of the previously computed set of all rules R (see Al-
gorithm 1) and an arbitrary subject Si. The set of properties belonging to a
certain subject Si are denoted as PSi . The final set C will contain all suitable
properties (recommendation candidates) for the subject Si.

For each property pi occurring on the input subject Si, all rule-triples (pa, pb, c)
where pi is the head of the rule, are detected. Rules containing a tail which
is already present in Si are not considered. All found rules are subsequently
compressed (cf. second foreach-loop in Algorithm 3) to pairs which represent
the recommendation candidates. Every recommendation candidate pair holds
a suitable property which was extracted from the tails of all found rules and
an additional value c which indicates the suitability of the respective property.
This value c is defined as the sum of all count values of all rules which pointed
to the respective property. This number indicates the probability that the
property is suitable in the current context of the subject Si and its already
present properties PSi . The higher the value c the higher the probability that
the recommendation candidate is appropriate in the current context.

After having detected this (probably large) set of recommendation candidates,
the most important and therefore the most useful recommendations for the
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Input: PSi ,R
Output: set C of all recommendation candidates for Si

1 C ← ∅
2 T ← ∅
3 foreach pi ∈ PSi do
4 foreach (pa, pb, c) ∈ R do
5 if (pa = pi ∧ pb /∈ PSi) then
6 T ← T ∪ {(pa, pb, c)}
7 end

8 end

9 end
10 foreach (pa, pb, ci) ∈ T do
11 if (∃(px, c) ∈ C, where px = pb) then
12 C ← C \ {(px, c)}
13 C ← C ∪ {(px, c+ ci)}
14 else
15 C ← C ∪ {(pb, ci)}
16 end

17 end
18 return C

Algorithm 3: Computation of recommendation candidates

user have to be extracted. This is done by ranking algorithms which are
explained in the following part.

3.4.2 Ranking Algorithms

The set of of recommendation candidates which are computed as described in
Section 3.4.1 is probably very large. Due to the fact that both the cognition of
the user and the space available for displaying the recommendations is limited,
the size of the set of recommended properties is restricted. To show the top-n
suitable properties an efficient ranking algorithm has to be applied to the large
set of recommendation candidates. The naive ranking is performed by sorting
the pairs by value c (see Algorithm 3) which indicates the suitability of the
property. The value is defined as the sum of all support values of all rules
which point to the respective property.

The value c is an absolute number which is based on the number of subjects
which confirm to the respective rule. Therefore, rules with a high support
value are ranked very high, even if there would be more suitable rules with a
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rule count

inhabitants → mayor 100
elevation → mayor 100
name → mayor 100
name → website 50,000

Table 3.6: Example of rules and
corresponding count values

property global count

website 100,000
mayor 1,000
inhabitants 800
elevation 500

Table 3.7: Global occurrences of
properties

New York City

name New York City
inhabitants 21,001
elevation 33 feet

Table 3.8: Example subject about New York

lower support. Consider the example in Table 3.6 which lists some example
rules and corresponding support values (number of subjects which confirm
to the respective rule). Table 3.7 lists properties and their total number of
occurrences in the system. If these example rules and an example subject as
listed in Table 3.8 are input to the recommender system, the recommendation
candidates and the according c-values are:

{(mayor, 300), (website, 50000)}

After applying the ranking algorithm, the property website is ranked higher
than the property mayor as the single rule pointing to website has a very high
c-value. This would indicate that website is more appropriate in the given
context. When using this approach, strong but often trivial rules which con-
firm to a large set of subjects (e.g. property name appears on every subject) are
hard to “beat” by other more appropriate rules. For example, mayor might be
the better recommendation in this context as it is not that obvious as name or
website. This problem can be led back to the ordering which is based on the
total sum of appearances and neglects the context of the recommendation—the
subject itself. Especially, when showing only a limited amount of recommen-
dations (e.g., ten properties due to user interface constraints) those trivial
rules have an huge impact on the accuracy of recommendation as they would
always occupy the first ten ranked positions. To cope with this problem, the
algorithm has to be adapted to use a relative score which takes into account
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the number of rules which feature a property candidate as described in the
following section.

3.4.3 Context-Sensitive Optimization

Recommendations are always computed in a specific context and should be as
accurate as possible in the respective context. In the scope of the SnoopyCon-
cept one dimension of the context is the subject itself and its structure. As
the previously presented Algorithm 3 heavily relies on the global popularity of
co-occurring properties (confidence) the incorporation of the context further
augments and emphasizes the importance of rule suitability for the respective
subject and weakens the influence of globally popular rules. This is achieved by
extending the Algorithm 3 to provide two additional scores which can be used
for a more sophisticated ranking strategy. Thus, the set of recommendation
candidates consists of triples in the form of:

(p, ccontext, cconfidence)

The score ccontext of property p indicates the number of rules which feature
property p. cconfidence is similar to the already present count score of Algo-
rithm 3 but takes the total amount of global occurrences of the respective
property into account and thus, mitigates very strong rules.

Equations 3.1 and 3.2 show the computation of the score ccontext of a given
property pcandidate of the set of recommendation candidates. For each property
pi which was already stored in subject Si (subject which is currently edited by
the user) we check if there exists a rule with the head pi and the tail pcandidate
and count all occurrences of matching rules.

compute context(pcandidate) =
∑

pi∈PSi

feature(pi, pcandidate) (3.1)

feature(rhead, rtail) =

{
1 if rhead → rtail ∈ R
0 otherwise

(3.2)

Equation 3.4 shows the computation of cconfidence of a given property pcandidate.
For each property pi which was already stored in subject Si, we retrieve the
count value of rule pi → pcandidate divided by the global count value of pi. The
resulting sum specifies the confidence of the property candidate pcandidate.
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compute confidence(pcandidate) =
∑

pi∈PSi

confidence(pi, pcandidate) (3.3)

confidence(rhead, rtail) =
countrhead→rtail
countrhead

(3.4)

Subsequently, the computation of recommendation candidates as shown in
Algorithm 3 can be extended by incorporating cconfidence and ccontext as pre-
sented in Algorithm 4. The new function getGlobalPopularity(pi) returns
the number of global occurrences of a given property pi. For example, con-
sidering Table 3.7 the function call getGlobalPopularity(website) would
return 100,000.

Input: PSi ,R
Output: set C of all recommendation candidates for Si

1 C ← ∅
2 foreach pi ∈ PSi do
3 foreach (pa, pb, c) ∈ R do
4 if (pa = pi ∧ pb /∈ PSi) then
5 cpopularity ← getGlobalPopularity(pi)
6 if ∃(px, ccontext, cconfidence) ∈ C, where px = pb then
7 C ← C \ {(px, ccontext, cconfidence)}
8 C ← C ∪ {(px, ccontext + 1, cconfidence + c

cpopularity
)}

9 else
10 C ← C ∪ {(px, 1, c

cpopularity
)}

11 end

12 end

13 end

14 end
15 return C

Algorithm 4: Computation of recommendation candidates by consid-
ering context and confidence

Consider again the example subject in Table 3.8 and the available rules in
Table 3.6 on page 62. When applying the adapted Algorithm 4 on the example,
the resulting set of property candidates are:
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{(mayor, 3, 100

800
+

100

500
+

100

1000
), (website, 1,

50000

100000
)} ≡

{(mayor, 3, 0.425), (website, 1, 0.5)}

Using the previous Algorithm 3 the property website with a score of 50,000
always “beats” the property mayor with a score of 300. In contrast the new
algorithm balances the confidence scoring to a very similar score of 0.425 and
0.5 and furthermore indicates a strong suitability for the property mayor by
its context score of 3.

Both values ccontext and cconfidence are very valuable and should be incorpo-
rated by the ranking algorithm. This can be achieved by using either a simple
ordering by two attributes, or a weighted and normalized combination. The
simple ordering sorts all entries based on the first attribute, e.g., ccontext and
takes the second attribute, e.g., cconfidence into account if two entries fea-
ture the same ccontext. The normalized and weighted ranking normalizes both
values to the range between 0 and 1 (feature scaling [10]) and subsequently,
applies a weighting function as follows:

total score = α · ccontext + (1− α) · cconfidence with α ∈ [0, 1]

The weighting factor α which can be defined in the range between 0 and 1
indicates if the context score or the confidence score has the higher influence
on the final score. For example a weighting factor of 0.5 indicates a balanced
weighting between both scoring values. The final ranking is subsequently
computed by using the combined score value.

Our evaluation results in Section 17 showed for the used dataset that the
normalized and weighted ranking is not able to perform better than the simple
ordering by two attributes. Thus, the overhead by normalizing and weighting
can be omitted which results in a performance gain of more than 30% (cf.
Section 4.4).

3.4.4 Refinement Recommendations

The previously introduced algorithms aim at recommending structure respec-
tively properties. In this section we describe approaches to compute refinement
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recommendations which incorporate the user already during the insertion pro-
cess to increase the quality of data before it is stored to the information system
as proposed in Sections 3.3.3 and 3.3.4.

Refinement recommendations guide the user to refine values and therefore,
increase the quality of the inserted values. The first type of recommendation
guide the user to specify the type of a value. For this, we apply pattern match-
ing using predefined regular expressions for e.g., integers, strings, and URLs
to automatically define the type of the value in our reference implementation
SnoopyDB described in Section 5.1. Furthermore, we provide manually cu-
rated unit patterns to recognize e.g., weight or volume units. Matched types
and units are suggested to the user who can validate, approve, or adapt the
proposal. Predefined conversion formulas automatically convert typed values
internally to a unified SI base unit [84]. For example, SnoopyDB unifies all
weight values internally to kilogram. This unified typed value is subsequently
used for search and thus, increases the search capabilities.

The second type of recommendation aims at reusing already present values
or subjects. To achieve this, an auto-completion mechanism already proposes
entries during the user is typing a new value. The recommendations are com-
puted by applying a full-text search using e.g., n-grams [39] on all values and
subjects in the information system and subsequently applying a ranking ac-
cording to the amount of usage of all matched items. Additionally, we use
a thesaurus [114] to improve the auto-completion by searching for syntacti-
cally different but semantically similar terms. Furthermore, a dictionary based
spell-checker is used to suggest corrections to the user to avoid typos or mis-
spellings. Both measurements aim at preventing the introduction of additional
synonyms.

If those full-text based recommendations contain matching subjects, the rec-
ommendations can be used to propose semantic links which resolve ambigui-
ties as described in Sections 3.3.3. The system suggests all matching subjects
and proposes to choose one to set a semantic link to the respective subject.
By accepting a proposed subject, the system creates a semantic relationship
between the value/object and the respective subject which enhances the plain-
text value entry by specifying its meaning.

All these recommendations incorporate the user and aim at increasing the
quality of stored information. Our user experiments presented in Section 6.1.3
show that those refinement recommendations are accepted by the user and
result in a higher quality of information stored in the system.
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3.5 Personalizing the SnoopyConcept

The basic SnoopyConcept algorithm pursues a “wisdom of the crowd” ap-
proach which does not incorporate the behavior of a current active user in the
system. Thus, the computation of recommendations is based on the collective
knowledge only and does not consider the habits of a single user. This ap-
proach is well suited for community-based knowledge bases such as Wikipedia
due to the democratic community-based decision process. In Wikipedia, the
community regulates the suggested structure which should be used to create
articles or respectively store knowledge to the information system. Other sys-
tems and use cases allow their users more freedom when inserting data into
the information system. Consider a large tagging system, which provides the
possibility to categorize objects by using tags. It is obvious that the tag vocab-
ulary should be kept as small as possible to reduce synonyms and minimize the
long tail distribution of tags in the information system. This can be achieved
by encouraging the user to reuse already present tags in the information sys-
tem. To accomplish this task, a recommendation system which uses the basic
Snoopy algorithm can be used. However, in such a scenario the personal pref-
erences of a very committed user is not considered. If the user for example
is tagging photos which were shot in Innsbruck, the user always uses the tag
City:Innsbruck. If the algorithm is only based on the collective knowledge, a
tag City:NewYork would be recommended as it is more often used than the
tag City:Innsbruck, even if the less used tag is more appropriate in the con-
text of the user who is interested in photos about Innsbruck. This observation
has triggered the incorporation of an additional context, namely the context
of the user’s preferences. Especially for recurring users the extension of the
Snoopy algorithm by the context of the user’s preferences is very important
and increase the acceptance rate of the recommendation system. Therefore,
we discuss an extension of the basic Snoopy algorithm by incorporating a user
modeling approach in this section.

3.5.1 User Modeling

User Modeling is a traditional research area [96, 57, 30] which aims at build-
ing and refining user profiles which are subsequently used to adapt an infor-
mation system to the users. The challenge of modern information systems
was summed up by Gerhard Fischer [57] as follows: “The challenge in an
information-rich world is not only to make information available to people at
any time, at any place, and in any form, but specially to say the “right” thing
at the “right” time in the “right” way.“. This challenge is tackled by so-called
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user-adaptive systems which use user modeling strategies to filter or adapt
their information based on experience with their users.

The very mature research area of user modeling can be tracked back to Allen,
Cohen, Perrault and Rich in 1979 [96, 140, 43, 127]. Since then, many devel-
oped user modeling techniques were used and adapted by the recommender
system community due to the very similar goal of user modeling and recom-
mmender systems. These adaptions can also be mapped to the challenges in
the Snoopy Concept and is discussed in the following section.

3.5.2 Algorithm Extension by User Modeling

Due to the described limitation of a recommendation approach which is only
based on global knowledge the algorithm was extended by a user modeling
approach. We introduced the extension of the algorithm in [63] (see also
Section 5.2) which takes the user’s context and behavior into account. This
is realized by incorporating the user’s co-occurrence space to personalize all
types of recommendations. The user’s co-occurrence space is a subset of the
global co-occurrence space and consists of all subjects which are related to the
user. The decision whether an arbitrary subject is related or non-related to
a specific user is dependent on the use-case of the information system. For
example, subjects may be related to their authors, their creators or users who
starred, liked or somehow declared interest on the subject. In the Snoopy-
Tagging (see Section 5.2) prototype, subjects that were created by the specific
user were defined as ”related“ to the user. The generalized extension of the
SnoopyConcept algorithm (see Algorithm 3 in Section 3.4) to incorporate the
user’s co-occurrence space is shown in Algorithm 5. In contrast to the basic
algorithm we now distinguish between two sets, namely global which incor-
porates all subjects of the information system and user which incorporates
only subjects which are related to the specific user. Therefore, we have to
compute two candidate sets as shown in the extended Algorithm 5. The first
set Cglobal is computed by applying Algorithm 4 and contains all recommenda-
tion candidates which are based on the global rule set denoted by Rglobal. In
the second step the user’s specific rule set Ruser which only consists of rules
that are related to the respective user u is used for the computation of the
candidate set Cuser. Furthermore, the function getGlobalPopularity(pi) is
replaced by the personalized function getUserSpecificPopularity(pi, u).
The return value of this function defines how often a given property pi was
used by a specified user u. The computation of ccontext and cconfidence, which
is used in both candidate sets, corresponds to the already described procedure
of Algorithm 4 which incorporates the context of the current edited subject.
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Input: PSi ,Rglobal,Ruser, u
Output: set Cglobal and Cuser of all recommendation candidates for Si

and user u
1 Cglobal ← ∅
2 Cuser ← ∅
3 foreach pi ∈ PSi do
4 foreach (pa, pb, c) ∈ Rglobal do
5 if (pa = pi ∧ pb /∈ PSi) then
6 cpopularity ← getGlobalPopularity(pi)
7 if ∃(px, ccontext, cconfidence) ∈ Cglobal, where px = pb then
8 Cglobal ← Cglobal \ {(px, ccontext, cconfidence)}
9 Cglobal ← Cglobal∪{(px, ccontext+1, cconfidence+ c

cpopularity
)}

10 else
11 Cglobal ← Cglobal ∪ {(px, 1, c

cpopularity
)}

12 end

13 end

14 end
15 foreach (pa, pb, c) ∈ Ruser do
16 if (pa = pi ∧ pb /∈ PSi) then
17 cpopularity ← getUserSpecificPopularity(pi, u)
18 if ∃(px, ccontext, cconfidence) ∈ Cuser, where px = pb then
19 Cuser ← Cuser \ {(px, ccontext, cconfidence)}
20 Cuser ← Cuser ∪ {(px, ccontext + 1, cconfidence + c

cpopularity
)}

21 else
22 Cuser ← Cuser ∪ {(px, 1, c

cpopularity
)}

23 end

24 end

25 end

26 end
27 return Cglobal, Cuser

Algorithm 5: Computation of recommendation candidates by consid-
ering user and global context based on Algorithm 4

For the final ranking algorithm, we have to prepare both candidate sets Cglobal
and Cuser as shown in Algorithm 6. This preparation step consists of the
normalization (feature scaling) of ccontext and cconfidence in the corresponding
candidate set to the range between 0 and 1. This normalization of all involved
values to this range provides the possibility to easily combine these values in
further computations and ranking algorithms.
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Input: C
Output: C′

1 cconfidencemin
← undefined

2 cconfidencemax ← undefined
3 ccontextmin ← undefined
4 ccontextmax ← undefined
5 foreach (p, ccontext, cconfidence) ∈ C do
6 cconfidencemin

← min(cconfidencemin
, cconfidence)

7 cconfidencemax ← max(cconfidencemax , cconfidence)
8 ccontextmin ← min(ccontextmin , ccontext)
9 ccontextmax ← max(ccontextmax , ccontext)

10 end
11 foreach (p, ccontext, cconfidence) ∈ C do

12 C′ ← C′ ∪ {(p, ccontext−ccontextmin
ccontextmax−ccontextmin

,
cconfidence−cconfidencemin

cconfidencemax−cconfidencemin
}

13 end
14 return C′

Algorithm 6: Normalization of context and confidence scores

As Algorithm 5, which computes candidates based on the global and user’s
scope returns two sets of potential candidates and corresponding context and
confidence scores, we have to adapt the ranking algorithm to incorporate both
sets and compute the best suitable recommendations. We propose to use a
hybrid scoring function as follows:

total score = γ · scoreglobal + (1− γ) · scoreuser with γ ∈ [0, 1]

The weighting factor γ defines the weight of the final score between the user-
specific and global set of recommendations as shown in Algorithm 7. The
additional weighting factors α and β regulate the balance between the context
and confidence score in the respective scope (global or user) according to the
ranking described in Section 3.4.3.

Detailed information about the behavior of the ranking regarding the three
weighting factors α, β and γ can be found in Section 6.2. In our experiments a
value of γ = 0.1 turned out to be beneficial. Thus, the user’s scope was much
more important than the global scope which is strongly dependent on the use
case of the information system but shows that the incorporation of the user
scope can improve the quality of recommendation drastically and can outper-
form the default Snoopy algorithm. The quality of global recommendations
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Input: Cglobal, Cuser, α, β, γ
Output: set C of all recommendation candidates for Si

1 C ← ∅
2 foreach (pg, ccontextg , cconfidenceg) ∈ Cglobal do
3 γ′ ← γ
4 scoreglobal ← α · ccontextg + (1− α) · cconfidenceg
5 if ∃(pu, ccontextu , cconfidenceu) ∈ Cuser, where pu = pg then
6 scoreuser ← β · ccontextu + (1− β) · cconfidenceu
7 else
8 γ′ ← 1
9 end

10 total score← γ′ · scoreglobal + (1− γ′) · scoreuser
11 C ← C ∪ {(pg, total score)}
12 end
13 return C;

Algorithm 7: Hybrid ranking of candidate computation based on
global and user context

are heavily dependent on the data that was already stored to the system.
Especially at the beginning when the information system is almost empty
recommendation can be very inaccurate. This problem is called Cold-Start
problem and described in the following section.

3.6 Tackling the Cold-Start Problem

The cold-start problem is a typical challenge of recommender systems [149],
especially when using collaborative filtering approaches. Consider a movie
rental system which recommends suitable movies to a user. A recommenda-
tion algorithm of such a system could be based on movie ratings and user
profiles. Such a scenario is a typical use case of collaborative filtering ap-
proaches which compute recommendations by finding similar user profiles and
incorporating user reviews of movies. These recommendation algorithms pre-
sume a sufficient amount of user ratings of movies and extensive user profiles.
If we consider a movie which has not been rated or rented yet, the recom-
mendation algorithm cannot recommend this movie as no information about
this movie is present. This issue can be solved by introducing a “new movies”
section or using content-based and meta-data (e.g. genres) based recommen-
dation (cf. [99]). This behavior is realized by so-called Switching Hybrid Rec-
ommender Systems [90] which switch the recommendation method based on
the expected quality of the recommendations. Therefore, the recommender
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system can switch to a fallback method if insufficient data are present to com-
pute suitable recommendations. The more severe problem is the computation
of recommendations for a new user who just registered. The system does
not have any profile information of this new user after the registration and
therefore, cannot suggest any suitable movies to the user.

This cold-start problem is also present when recommending structures to the
user. Consider an information system which implements the SnoopyConcept
and computes structural recommendation during the insertion process. Four
possible cold-start types can be identified:

• Empty information system

• New (empty) subject

• New user

• New properties

The first type “empty information system” occurs when the SnoopyConcept
based system is just installed and it does not contain any data yet. In this
state, the recommendation algorithm has no information at all and is not able
to give any recommendation to the user. Therefore, the system is very vul-
nerable during this state as all information which are inserted to the system
during this phase will influence the recommendations in the future. First users
are therefore very powerful as they may bias the information system. Con-
sider a simply typo in a property which was added by the first user. Due to
the cold-start problem, the system does not have sufficient data to cope with
this typo and accepts the information as ground truth. Recommendations to
all further users will contain the incorrectly spelled property. If all users just
accept recommendations and do not recognize the typo, the property will be-
come mature and it will be more often used in recommendations. Especially
typos can be multiplied over years as they are simply overlooked by many
users. The same problem holds for a property which was used in an improper
context. Such biased recommendations cannot be handled by the system auto-
matically. Thus, it is very crucial that in this phase the inserted information
is well structured as this inserted structure is continuously suggested to all
users. Typos can be avoided by spell checkers but the avoidance of improper
semantic usage is very hard and requests a more sophisticated approach. To
tackle this problem, two approaches are imaginable. The obvious approach is
a manual approach which is done by a very committed community or admin-
istrators who have an extensive domain knowledge. They can fill the system
with a suitable ground-truth dataset which represents an optimal structure
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of common subjects and lowers the influence of new users. This approach is
only crowned with success if the domain of the information in the information
system is limited. Considering a use case such as Wikipedia, an introduction
of a suitable set of properties is very difficult as all possibilities have to be
covered. In such a extensive use case scenario, the administrative staff can try
to fix wrongly used properties as early as possible. These tasks can be sup-
ported by a spell checker or the usage of ontologies to try to locate problems
and point the administrative staff to them to take a closer look. This manual
approach of initially filled ground truth data was also used in the evaluation
(cf. Section 6.1.3) to overcome the cold start problem.

The second possible approach is an automated approach which is based on
an external source which can be exploited by the recommendation algorithm.
For example Wikipedia, DBpedia or already existing enterprise-information-
systems within a company can be exploited to recommend possible properties
or structures if the system is still empty and is not able to compute suitable
recommendation based on the data in the information system. The prerequi-
site for the usage of such pre-existing systems is that the systems exhibit a
common structure which is forced by a fixed predefined schema or maintained
by an administrator or by a community, e.g. the community of Wikipedia (cf.
Section 2.2). One could also fill the system by automated extracted informa-
tion from external systems such as Mail2Wiki [70] which extracts information
from emails. Due to the fact that the recommendations heavily base on the
initial data the quality of recommendations are directly related to the qual-
ity of the automated extraction process. Therefore, manually well curated
data are more suitable for tackling the cold start problem than automatically
generated data.

A combination of the manual and the automated approach was chosen to
realize an importer for the SnoopyDB [130]. This importer allows an adminis-
trator to import arbitrary JSON-APIs which are very common and provided
by many online platforms. Such an importer can also be used to overcome
the “empty information system” problem as the system can be automatically
filled with a suitable ground-truth set which is imported from a JSON-based
API. The semi-automated process of the importer allows the user to define a
mapping between the schema of the JSON-data and the final schema of the
SnoopyDB. Figure 3.2 shows a screenshot of the main step of the mapping
process. The process is realized as an iterative process which complies with
the insertion process in SnoopyDB. Thus, recommendations for the mapping
are computed and suggested to the user who is defining the mapping. The raw
attribute information (name and value) of the JSON-data is used a basis for
the recommendation computation. Based on the name of an attribute suitable
synonyms or other keys which are already present in the system are suggested
to the user. Continuously, the user may choose suitable attributes and define
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a mapping between the original attribute in the JSON-object and the key in
SnoopyDB. In the example in Figure 3.2 the RottenTomatoes JSON API 1 is
used to initially import movies. The screenshot shows already defined map-
pings by the user that are indicated by the arrows. Based on these mappings
additional suitable Properties are recommend which can be easily added by
choosing a field of the original JSON data that is present in the drop down
field. An additional preview of entries in the JSON list (bottom right) sup-
ports the user to find the correct mapping. After the successful definition of a
mapping scheme all subjects of the JSON-API can be imported automatically.
If there are any uncertainties, the importer can ask the user to clarify data
(e.g. spelling issues or possibilities to link values to other subjects to improve
the semantic information in the system). The prototype of the SnoopyConcept
based importer was published in [130].

Figure 3.2: SnoopyImporter web interface: importing Rotten Tomatoes

1http://www.rottentomatoes.com, accessed 2017-07-17

74

http://www.rottentomatoes.com


3.6 Tackling the Cold-Start Problem

The second type of cold-start problems occurs when the users create a new
subject which does not contain any properties yet. In this case, the system
cannot compute any recommendations based on the currently entered informa-
tion. The SnoopyConcept proposes a switching hybrid recommender to tackle
this problem and use a fallback which recommend properties that are often
used in the system. For example a very popular property name or website

which is used by most of all subjects can be recommended to the user. If
the user who inserts information is well known by the information system the
recommendation engine can be extended by incorporating the user’s context
and behavior based on previously entered subjects. Thus, the computation
of popular properties is applied on the user’s scope and the recommendations
contain properties which are often used by the user. Consider a user who
already inserted many photos about the location Innsbruck. When creating
a new subject without any properties, the snoopyfied recommendation engine
recommends the property and its value location:Innsbruck to the user as
the probability is very high that the user inputs another image about Inns-
bruck.

When incorporating the user’s scope, the third cold-start problem “new user”
emerges as new users who do not have any profiles which could be used in
the recommendation computation. As the SnoopyConcept proposes a hybrid
recommender system this cold-start problem can be tackled by a switching
approach which switch to a fallback method to compute recommendations.
In this case, the fallback is to compute recommendations based on the global
scope without performing any refinements based on user profiles. An improve-
ment of this fallback handling can be the exploitation of vague user profiles
that for example are based on the location, retrieved by analyzing the user’s
IP address or other vague information that can be retrieved due to domain
knowledge (e.g., the referrer). The fallback approach based on global compu-
tations corresponds to the basic Snoopy algorithm without any User Modeling
extensions.

The last topic regarding the cold-start problem is concerned with the insertion
of unknown properties. Considering a subject which only consists of properties
which are unknown to the information system. This situation is very similar to
the previously described type of empty subjects as the recommendation is not
able to recommend any properties based on the current inserted information.
The same approach of recommending popular properties based on the global
scope or the personalized user’s scope is possible. Furthermore a thesaurus
approach can be applied to try to understand the unknown properties. This
can be realized by using an external thesaurus and finding synonyms or related
words of the current inserted properties. All found words which are semanti-
cally equivalent or related to the inserted properties can then be used as a basis
for the default recommendation strategy to find suitable recommendations.
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Summing up the above, the optimal strategy to cope with the cold-start prob-
lem is to use a mixed-initiative approach which involves a committed commu-
nity supported by automated tools to cope with the large amount of data (cf.
Section 2.4.2). Tools can analyze big data very fast and automatically and
can point the administrative staff to potential problems. Especially complex
semantic problems can only be detected by automated tools and have to be
solved by humans who are able to understand the complex semantic context.

3.7 Summary

In this chapter we presented the SnoopyConcept and the key idea to incor-
porate the user already during the insertion process to increase the quality
and quantity of knowledge in the information system by guiding and encour-
aging the user to insert homogeneous structured data. Besides the underlying
triple based data model the recommendation algorithm was explained. Fur-
thermore, the extension of the algorithm by considering user modeling was
described. Last, approaches to tackle the cold start problem in information
systems applying the SnoopyConcept were discussed. In the subsequent chap-
ter we present different data models which can be used to implement the
SnoopyConcept. Furthermore, implications and details about the implemen-
tation of the recommendation algorithms based on underlying data model are
discussed.
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CHAPTER 4

SnoopyConcept Storage Models and
Recommendation Implementation

In this chapter we discuss different implementation aspects of the SnoopyCon-
cept and its algorithms. The implementation of the SnoopyConcept can be
split into two major challenges.

The first challenge is to provide a fast storage and retrieval system for triples
which hold predicate-object information about subjects. As the SnoopyCon-
cept (cf. Section 3.2) is similar to the generic RDF model (cf. Section 2.1.3,
all RDF based databases and approaches may be used to implement the basic
storage system for Snoopy triples.

The second and most important challenge of the SnoopyConcept is the im-
plementation of a high-performance recommender system which is able to
compute suitable recommendations (cf. Section 3.4) within milliseconds. This
performance provides a real time experience to the user and increases the
user’s perceived accuracy [136].

To tackle those challenges, we propose three different implementation ap-
proaches based on Relational Database Systems, Document-oriented Stores,
and Graph Stores.
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For every database model we discuss a suitable storage model and the compu-
tation of recommendations. We cover performance and scalability considera-
tions which are crucial when dealing with large datasets which are common in
mass-collaboration systems. The last section consists of a performance evalu-
ation of all proposed storage models.

4.1 Relational Database Systems

The Relational Model (see Section 2.5.1) is one of the most used database
models and therefore, has been used as a basic layer in many RDF databases.
Therefore, it was the first choice to implement the SnoopyConcept based on
the relational model. In the following sections we describe common RDF
storage approaches and how we adapt them to develop the relational storage
model for the SnoopyConcept.

4.1.1 RDF Storage Models

These so-called Triple Stores based on the relational model have been real-
ized using different mapping strategies. The main two classes of mapping
strategies are schema-oblivious and schema-aware representations [164]. The
schema-aware mapping makes use of a present RDF schema (RDF/S) which
defines the structure of RDF data. As each subject adheres to a predefined
class in the schema, each class can directly be mapped to an according relation
(table) in the relational model. Each type/property is mapped to an attribute
(column) in the according relation. Thus, one tuple (row) in a relation repre-
sents one resource (subject) in the RDF representation. The schema-oblivious
approach is also feasible when no RDF-schema is present and the structure of
the RDF data is not known in advance which is the case for the SnoopyCon-
cept. Each triple in the RDF data—subject-predicate-object—is mapped to
one tuple in one big relation. This relation consists of three columns which
represent subject, predicate and object. The differences between the mapping
approaches mainly show in terms of retrieval performance. The schema-aware
approach is able to retrieve one resource by fetching only one row. When
using the schema-oblivious approach one has to fetch multiple rows to retrieve
all properties of one single resource. On the other side, the schema-aware
approach might lead to many NULL-values as especially in collaborative cu-
rated knowledge bases many properties are used rarely (cf. Section 2.4.1). To
cope with this sparsity problem hybrid solutions were introduced which map
frequently used properties to corresponding property-columns and store all
remaining sparse properties that do not occur frequently by using the schema-
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oblivious approach. To realize such an approach, the RDF data has to be
analyzed which dramatically increase the complexity of the approach. This is
one major reason why hybrid systems have not become widespread. Further-
more, the number of tables can be extremely high due to the potentially large
amount of classes in collaborative information systems. Especially traditional
relational database management system are not able to handle thousands of
tables which restricts the approach when using classical RDBMS.

One approach to handle such a large set of relations and the problem of many
NULL-values was proposed by Abadi et al. in [1]. The approach makes use of
column oriented database system which are able to handle large amounts of
tables and columns. They propose to map classes to tables and one property to
one column. Column oriented database systems do not store data table or row-
wise but store each column as a separated data structure. This storage model
allows to apply compression algorithms column-wise and compact columns
more efficiently. Considering the problem of many NULL values in one column
due to the fixed mapping of all properties to columns, such an approach is able
to compact all NULL-values by e.g., a simple run-length encoding [158]. In
contrast to classical relational database systems, column oriented database
system are designed without any limits regarding the number of tables or
columns in one table. This feature is also crucial for such a proposed mapping,
as it is usual that RDF data contains large classes with hundreds of properties
which results in hundreds of columns in one table in the relational model. The
big advantage of the vertical approach [1] lies in the reduced complexity as
one fixed mapping can be used, while at the same time, solving the problem
of efficiently storing data and their resulting NULL values.

In general, due to the high complexity of schema-aware and hybrid approaches,
the schema-oblivious approach has emerged and is now the default approach
when considering fast and modern Triple Stores based on the Relational Model.
The schema-oblivious approach can be realized with different underlying stor-
age models, such as row or column oriented storage models. When using a
row-based approach, typically the three-column layout of a Triple Store is used.
The performance gain by mapping one property to one line can be caught up
by optimizations such as adding well-chosen index structures. Such indices are
very important due to the nature of the relational representation. Especially
the usage of a schema-oblivious mapping approach results into many self-joins
as all information are stored in one big table. Consider the example of a query
“List all cities which have a female mayor and print the name of the city and
the mayor” which is executed on one big triple table which holds all informa-
tion. The transformed query to SQL can be found in Listing 4.1 and consists
of four self joins to be able to retrieve all needed facts. The relation t1 (line
3) selects all entries which indicate that the subject is of type city. In the next
step the connection between the city and the mayor is searched (line 5).

79



Chapter 4 Storage Models and Recommendation Implementation

Listing 4.1: Trivial query transformed to SQL results in four self joins

1 SELECT t5.object as CityName , t4.object as MayorName

2 FROM triples t1, triples t2, triples t3, triples t4 , triples t5

3 WHERE t1.predicate = ’type ’ AND t1.object = ’City ’

4 AND t1.subject = t2.subject

5 AND t2.predicate = ’mayor ’ AND t2.object = t3.subject

6 AND t3.subject = t4.subject

7 AND t3.predicate = ’gender ’ AND t3.object = ’female ’

8 AND t4.predicate = ’name ’

9 AND t5.subject = t1.subject AND t5.predicate = ’name ’

Relation t3 contains the gender of all found mayors of t2 and is continuously
filtered to all female mayors by the selection in the where clause (line 7). The
join between t3 and t4 results in the set of all names (t4) of all found female
mayors (t3). In the last step the same approach is used to fetch the names
of all found cities which are contained in t5. Thus, the objects of t4 and t5

which contain names of the mayors and the cities are projected respectively
printed in the final result set. Due to this heavy usage of self joins, indices are
needed to execute such queries in an acceptable amount of time when using
the schema-oblivious approach. Those index structures are discussed in the
following section.

4.1.2 RDF Storage Index Structures

To access the triple based storage as described in the previous section as fast
as possible, additional index structures are needed. Hart et al. proposed in [72]
to create multiple indices to cover all access patterns of queries and speed up
the execution of queries. They used a quadruple based RDF storage system
which besides the subject-property-object triple concept also takes the context
(namespace/prefix) into account and therefore, stores all RDF information
chunks as quads in four columns. To speed-up all possible queries, where
any of subject, property, object or context is either defined or a variable,
they introduced 24 = 16 access patterns. To cover all access patterns, 16
indices are needed in a naive approach. Hart et al. also showed in [72] that
all 16 patterns can be covered by only six indices when using B+-tree index
structures. The resulting indices are spoc, poc, ocs, csp, cp and os where
each letter denotes the corresponding column in the original table. A very
similar approach is proposed by Wood et al. in [177] who proposed to store
quads in six different orders to cover all possible queries. However, both
approaches do not consider all possible permutations (4! = 24 when using
quads) when taking into account the cyclic order of the indices. For example
there is no suitable index when querying all subjects of a given property, e.g.
all cities where the property mayor is specified, as we would need an index with
the combination ps to solve this query. This problem is tackled by Weiss et
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al. in the Hexastore approach [172]. They argue that most other RDF stores
prioritize subjects or properties and therefore, prerequisite specified property
or subject values in queries to use indices. Such patterns which do not specify
properties are very common in more complex queries, e.g. finding incoming
edges/properties of a specified object, but are not addressed by most RDF
stores. In [172], the concept of Hexastores is introduced which pays equal
attention to all RDF items and does not privilege any item. This goal is
reached by materializing all possible orders of the spo triple which results to
six indices (3! = 6) spo, sop, pos, pso, osp and ops. Table 4.1 shows that
six indices are able to cover all 15 possible patterns which are possible in a
query.

Pattern → Index Hexastore

s?? → spo or sop
sp? → spo

spo → *

so? → sop

sop → *

p?? → pos or pso
ps? → pso

pso → *

po? → pos

pos → *

o?? → osp or ops
op? → ops

ops → *

os? → osp

osp → *

Table 4.1: Coverage of Hexastore’s indices

Weiss et al. use vector based data structures in their Hexastore approach [172].
Thus, a vector with all according properties is attached to every subject when
considering the spo index. Furthermore, every property points to another
vector which consists of according objects of the spo index. The advantage of
storing all information in separated vectors is the possibility to reuse vectors.
For example the object vectors attached to sp of the spo-index can be reused
in the pso-index as the objects are defined by sp and ps independently of the
order of subject and property. This approach reduces the amount of required
disk space and allow to perform fast join algorithms due to the sorted layout of
the vector based approach. We use a very similar storage model in SnoopyDB,
our reference implementation of the SnoopyConcept, which is described in
more detail in the following section.
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4.1.3 SnoopyConcept Relational Storage Model

We build our approach on the classical relational database model using a
schema-oblivious mapping. Thus, each RDF triple is stored in a triple table
consisting of three columns, namely subject, property, and object. Due to
performance reasons and to save disk storage we use a dictionary approach
to store only numeric values in the triple table and store the string repre-
sentation or URIs of subject, property, and objects in corresponding lookup
tables. Furthermore, the lookup tables can be used to store statistics about
the respective values which are used in the computation of recommendations,
e.g., global count of a property.

Subjects

sub id sub text sub count

1 http://dbpedia.org/resource/Innsbruck 4
2 http://dbpedia.org/resource/Austria 1

Properties

prop id prop text prop count

1 http://dbpedia.org/ontology/country 1
2 http://www.w3.org/2000/01/rdf-schema#label 3
3 http://xmlns.com/foaf/0.1/homepage 1

Objects

obj id obj text obj count

1 http://dbpedia.org/resource/Austria 1
2 ”Innsbruck”@en 1
3 ”Innsbruck”@de 1
4 http://innsbruck.at/ 1
5 ”Austria”@de 1

Table 4.2: Dictionary/lookup tables

Table 4.2 and 4.3 contains an excerpt of the DBpedia entry of the city Inns-
bruck1 mapped to the SnoopyConcept storage model. The shown table struc-
ture is simplified as the SnoopyConcept reference implementation furthermore
stores information about the type, language and other statistical data. The
raw data of the subject Innsbruck is stored in the triple format as shown in
Table 4.3. The corresponding string and URI representations are stored in

1http://dbpedia.org/page/Innsbruck, accessed 2017-07-17
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dictionary tables as shown in Table 4.2. The numeric ids of all string repre-
sentations are generated during the import process. When querying the data,
the used strings in the query have to be mapped to the numeric representa-
tion. The same holds for the result set which has to be mapped back to a
string representation. The dictionary approach has a huge impact on perfor-
mance which is mainly based on the reduced disk storage and the handling
of numeric values. As every string is only stored once, the size of the main
triple table can be reduced dramatically. This storage reduction results in a
faster processing of all triples and a reduced size of all index structures on the
main triple table. Especially when dealing with a lot of self-joins, the database
system works more efficiently with numeric values as integer based indexes are
faster and therefore, speed up the lookups of join algorithms. The overhead of
mapping and lookups is therefore negligible as the compute-heavy operations,
such as joins, are speeded-up.

sub id prop id obj id

1 1 1
1 2 2
1 2 3
1 3 4
2 2 5

Table 4.3: Triple table which contains the raw information

For the definition of indexes on the main triple table, we identified in the first
step all possible patters of queries regarding defined columns (subject, property
or object) in the selection part and the queried columns in the projection
part which are part of the result set. Consider again the query about cities
that contain the information about the mayor a typical pattern would be
(?,mayor,?) to identify all subjects that have a specified property mayor. As
the order of the defined columns does not influence the choice of the index we
were able to identify 13 possible query patterns which are shown in Table 4.4.

The first three columns in Table 4.4 define which columns are defined (X) in
a corresponding query-pattern. The question mark indicates which columns
are queried and therefore, projected as the result of the query-pattern. The
fourth column indicates the column order which is needed in a suitable index to
answer the query-pattern. The last column shows all indices of the SnoopyDB
that are suitable to answer the corresponding query-pattern.

As the information about the object column in the spo and pso index is re-
dundant, we store the full spo index and reduce the pso index to ps. This
procedure is accordingly applied to the other indices which results in six in-

83



Chapter 4 Storage Models and Recommendation Implementation

S P O Needed information (ordered) Index SnoopyDB

X ? sp spo

X ? so sop

X ? ? spo or sop spo or sop

X ? po pos

? X ps ps

? X ? pso or pos pos

? X op op

? X os osp

? ? X osp or ops osp

X X ? spo or pso spo

? X X pos or ops pos

X ? X sop or osp sop or osp

X X X * sop,spo,pos or osp

Table 4.4: Coverage of SnoopyDB’s indices

dices, four trivalent indices and two bivalent indices, namely spo, sop, pos,

osp, op, and ps. As shown in Table 4.4, we are able to answer all possi-
ble query patterns by these six indices while at the same time reducing the
amount of needed disk space to about 87% of six triple-indices. In contrast
to the Hexastore approach [172], our approach does not need its own storage
layout and implementation. The presented index approach solely relies on
default index structures which are provided in all classical relational database
models. This huge advantage simplifies the implementation of the Snoopy-
Concept drastically as it can be developed on top of any relational database
system.

4.1.4 Recommendation Computation

For the recommendation part of the SnoopyConcept the relational model of-
fers two possible approaches to compute suitable recommendations. The first
approach computes recommendation on the fly. This means that based on the
currently edited subject, the system has to find suitable properties. If we con-
sider a simple triple store as described above, we have to perform a query as
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shown in Listing 4.2 to get a ranked list of all suitable properties. The query
searches for subjects that contain properties that are present in the currently
edited subject and thus, show a similarity to the currently edited subject. The
set of properties that are present in similar subjects but not present in the
currently edited subjects (guaranteed by the NOT IN statement) forms the set
of suitable properties. This candidate set needs to be ranked to recommend
the most suitable properties in the current context. In the query in List-
ing 4.2, properties are ranked by the number of votes (cf. Section 3.4.3) they
get by other properties, thus, the higher the number of properties in t1 that
point to the respective property in t2 the higher the rank in the final set of
recommendations.

Listing 4.2: On-the-fly computation of recommendations

1 SELECT t2.property FROM triple t1, triple t2 WHERE

2 t1.property IN (’prop1 ’,’prop2 ’,’prop3 ’) AND

3 t2.property NOT IN (’prop1 ’,’prop2 ’,’prop3 ’)

4 AND t1.subject = t2.subject

5 GROUP BY t2.property

6 ORDER BY count (*) DESC

Although the query contains only one join and a grouping, in practice these two
operations are very expensive as the join generates a extensive intermediate
result set which is continuously grouped by the property. These two operations
are inefficient on large datasets and therefore, too slow for any user-satisfying
real-time recommendation computation.

4.1.5 Rule Based Recommendation

Due to the previously explained performance considerations of on-the-fly rule
generation, the second and recommended approach to compute the set of
recommendations involves the usage of precomputed association rules (see
Section 3.4). The realization using such rules in the relational model is straight
forward and can be realized by a two-column table which represent the head
and tail of one rule. The generation of rules is shown in Listing 4.3 and
loops over all properties in the system and computes all corresponding rules
where the current properties denotes the head of the rule. The result is a
very large table containing all rules including duplicates. To compact the
rule table and provide a possibility to perform a simple ranking as described
above, an additional count may introduced. By grouping all rules by head
and tail and store the count value, as shown in Listing 4.4, the quality of the
recommendations can be increased by introducing a simple ranking based on
the count values which is also described in detail in Section 3.4.
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After generating all rules, the recommendation computation can be performed
by a very simple and therefore fast query on the rule set as shown in Listing 4.5.
As the set of rules is already compacted and no join is needed, the SQL
query does not need to handle large intermediate join-results and only needs
to perform a grouping operation on a manageable set of suitable properties.
Moreover, there is no need for additional index structures, as the primary key
of head and tail is sufficient for all computations.

Listing 4.3: Precompute association rules

1 FOREACH (properties as curr_prop)

2 INSERT INTO rule (head ,tail) (

3 SELECT t1.prop , t2.prop

4 FROM triple t1 , triple t2

5 WHERE t1.subject = t2.subject

6 AND t1.prop = curr_prop

7 AND t1.prop <> t2.prop

8 GROUP BY t1.subject ,t1.prop ,t2.prop

9 );

10 END FOREACH;

Listing 4.4: Compacting rules

1 INSERT INTO rulecount (head ,tail ,c)

2 (SELECT head , tail , count (*)

3 FROM rule GROUP BY head ,tail);

Listing 4.5: Compute top-10 recommendations based on precomputed rules

1 SELECT tail as recprop FROM rulecount

2 WHERE head IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

3 AND tail NOT IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

4 GROUP BY tail

5 ORDER BY sum(c)

6 DESC LIMIT 10;

The recommendation algorithm can be improved by taking the confidence and
context values into account (cf. Section 3.4.3). The SQL based query of the
optimized ranking can be found in Listing 4.6. The context value count(*)

reflects the number of rules which are pointing to the respecting property. The
confidence value sum(c/prop count dist) denotes the strength of the rules
in proportion to the number of subjects that contain the respective property
at least once.

Listing 4.6: Recommendation computation considering confidence

1 SELECT tail as recprop , count (*),

2 sum(c/prop_count_dist) FROM rulecount

3 JOIN dict_prop ON (head=prop_id)

4 WHERE head IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

5 AND tail NOT IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

6 GROUP BY tail

7 ORDER BY count (*) DESC , sum(c/prop_count_dist) DESC

86



4.1 Relational Database Systems

8 LIMIT10;

The normalized (feature scaling) and weighted combination between context
and confidence as described in Section 3.4.3 can be translated to SQL as shown
in Listing 4.7.

Listing 4.7: Hybrid recommendation computation incl. weighting

1 SELECT recprop ,

2 IFNULL ((context -mincontext)/( maxcontext -mincontext), 0)

3 as contextnorm ,

4 IFNULL ((confidence -minconfidence)/( maxconfidence -minconfidence), 0)

5 as confidencenorm

6 FROM

7 (SELECT min(context) as mincontext ,

8 max(context) as maxcontext ,

9 min(confidence) as minconfidence ,

10 max(confidence) as maxconfidence

11 FROM

12 (SELECT tail as recprop ,

13 count (*) as context ,

14 sum(c/prop_count) as confidence

15 FROM rulecount JOIN dict_prop ON (head=prop_id)

16 WHERE head IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

17 AND tail NOT IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

18 GROUP BY tail) as rectemp

19 ) as maxmin ,

20

21 (SELECT tail as recprop ,

22 count (*) as context ,

23 sum(c/prop_count) as confidence

24 FROM rulecount JOIN dict_prop ON (head=prop_id)

25 WHERE head IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

26 AND tail NOT IN (’prop1 ’,’prop2 ’,’prop3 ’,...)

27 GROUP BY tail

28 ORDER BY context DESC , confidence DESC

29 ) as recommendations

30

31 ORDER BY (contextnorm * @alpha) + ((1- @alpha)*confidencenorm) DESC

32 LIMIT 10;

The implementation based on the relational model turned out to be very
flexible as it can be used on top of every relational database system but at
the same time, computes recommendation very fast. In our evaluation the
recommendations were computed in 3-20ms depending on the amount of initial
properties. More details regarding the performance of this approach can be
found in Section 4.4.
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4.2 NoSQL: Document-oriented Stores

In contrast to the previously described Relational Model, most NoSQL databases
(see also Section 2.5.2) do not provide any support for join operations. Es-
pecially in document-oriented stores documents are not normalized or split
to multiple chunks and thus, do not need any join operations to reassemble
the original document. Such a non-normalized storage model results in the
redundant storage of data in exchange of an increased performance due to the
lack of reassembly-costs and easier distribution to multiple nodes in a cluster
environment (cf. Section 2.5.2).

4.2.1 Storage Model

One obvious model to store RDF data in a Document-oriented Store is to map
all properties of one subject to one document. Each document is referenced by
its key, in the use case of RDF the name or URI of the subject, which can be
used to retrieve all properties of one subject by execute one single-point query.
Listing 4.8 shows the subject “University of Innsbruck” stored in a document
in MongoDB. MongoDB is a popular NoSQL database which we use for the
implementation of the SnoopyConcept.

Listing 4.8: Document in MongoDB about the University of Innsbruck

1 {

2 "_id" : "University of Innsbruck",

3 "country" : "Austria",

4 "numberOfStudents" : 27439 ,

5 "numberOfFaculties" : 16

6 "established" : "1669"

7 }

When only considering properties of one subject, the query can be executed
very fast. Although, due to the lack of join operations, more complex queries
which have to resolve relationships between subjects cannot be realized by
one single query. Consider again the example of a query “List all cities which
have a female mayor and print the name of the city and the mayor”. The first
task of finding all cities which include the information about the mayor can
be easily realized by one query. In the next step, the documents of all found
mayors which include the information about the gender of the mayor have to
be retrieved by an additional query in the system.

The first query is realized by performing a full-table scan as document-oriented
stores do only provide fast access via the primary key. If the primary key
is not given in the query, all data has to be analyzed. Depending on the
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underlying database system and its features, it is possible to increase the query
execution performance by creating additional indices which allows to specify
non-primary-key fields in the search query. In document-oriented stores indices
are created on properties (similar to column based indices in classical relational
database systems). The index is realized as a secondary index which points
to all documents that use the respective property. Furthermore, depending
on the implementation, the corresponding value of the property can also be
stored in the index. To speed up all possible queries, a new index would be
needed for each used property.

When using an index based approach to speed up queries the same problems
arise, as already discussed in the previous Section 4.1. When trying to cover all
used properties in the document-oriented store by indices, for each property an
index has to be created. Properties are not known in advance and creating an
index for each new properties would lead to a unpredictably large amount of
indices which would result in a large overhead. For example to store DBpedia
the database would have to manage over 32,000 indices to cover all properties
in the DBpedia dataset.

4.2.2 Recommendation computation

Due to the limitations regarding indices described in the previous section a
live computation of recommendation based on the basic data is not possible in
an acceptable amount of time. Therefore, a precomputation approach similar
to the previously described approach in 4.1 has to be applied to compute
recommendations efficiently.

The rule based approach explained in the previous section has to be adapted
to the document-oriented model. The access in document-oriented databases
is optimized to retrieve single documents . Thus, one single document has to
contain as much information as possible. Storing only one rule per document
would lead to a big amount of documents which have to be fetched to compute
one single recommendation. Therefore, multiple rules have to be combined and
stored in one document.

The recommendation computation explained in Section 3.4 fetches rules based
on their heads. Thus, the rule grouping can be realized by the head as shown in
Listing 4.9. The id/primary key of the document denotes the head of all rules
that are stored in the document. The tails and the corresponding count-values
are stored in the document as well. This storage model allows to fetch only
a few documents to get all needed rules for computing one recommendation.
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The number of documents that have to be fetched corresponds to the number
of distinct properties that are already present on the current edited subject.

Listing 4.9: Representation of grouped rules in one MongoDB document

1 {

2 "_id" : "name",

3 "tails" : [ {

4 "property ": "mayor",

5 "count": 100

6 }, {

7 "property ": "website",

8 "count": 50000

9 }

10 ]

11 }

After the retrieval of all required documents respectively all suitable rules,
all rules have to be grouped and merged to the set of recommendation can-
didates. Subsequently, a ranking has to be applied to get the final set of
recommendations.

For the realization of the recommendation computation, the aggregation
framework of MongoDB (available since Version 2.2) is used as it provides
a fast alternative to long running map/reduce queries and therefore, is best
suited for the real-time computation of recommendations. It provides a
pipelining interface to apply multiple aggregation and matching tasks in an
ordered sequence. An example of a pipline in MongoDB which represents
the basic recommendation computation of Listing 4.5 can be found in List-
ing 4.10.

Listing 4.10: MongoDB aggregation pipeline to compute recommendations

1 db.rules.aggregate( [

2 { $match : { $in : [’prop1 ’,’prop2 ’,’prop3 ’ ,...] },

3 { $unwind : "$tails" },

4 { $group :

5 { _id : "$tails.property" , number : { $sum : "$tails.count" } }

6 },

7 { $match : { $nin : [’prop1 ’,’prop2 ’,’prop3 ’,...] },

8 { $sort: { number: -1 } },

9 { $limit : 10 },

10 ] )

Another big advantage of most NoSQL databases is the scalability they offer.
Especially when dealing with big datasets this could be a big benefit which is
explained in more detail in the following section.
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4.2.3 Distribution and Sharding

The processing of large datasets which are created by mass-collaboration on a
web-scale can be very demanding regarding the throughput of data. Especially
the computation of up-to-date recommendations in an online collaboration
system which is constantly changing is very expensive as all changes have to
be considered to be able to react on trends and new information. If one single
node is no longer able to handle the traffic and computation, a distribution of
computation and data storage is needed. In this section, we describe how the
SnoopyConcept can be used in a sharded and distributed environment.

Most of the state-of-the-art NoSQL databases provide such scalability features
out of the box which is also a substantial reason for their success. MongoDB
provides an automated distribution feature that distributes and replicates the
stored data to several nodes while taking care of replication and redundancy.
But not only the data distribution is done automatically, also the computation
is distributed to speed up the execution. For example, a query using the
MongoDB aggregation framework is automatically distributed in a sharded
MongoDB cluster. Furthermore, MongoDB provides the possibility to use the
MapReduce model to distribute computation. MapReduce was developed by
Google [48] for complex computations or big data use cases that cannot be
processed or stored on one single node.

Listing 4.11: MapReduce algorithm to count words [48]

1 map(String key , String value):

2 // key: document name

3 // value: document contents

4 foreach word w in value:

5 EmitIntermediate(w,"1");

6

7 reduce(String key , Iterator values):

8 // key: a word

9 // values: a list of counts

10 int result = 0;

11 foreach v in values:

12 result += ParseInt(v);

13 Emit(AsString(result));

The MapReduce paradigm can be led back to the functions map and reduce
that are widely used in several functional programming languages such as Lisp.
In data processing many operations can be split to a map function which is
applied on all entries and outputs key-value pairs as a result. The key-value
pairs subsequently are grouped by the key and sent to a a reduce function
to gather the final result. Due to the principles of functional programming
the map and reduce function itself do not have any global dependencies and
can be executed independently. Those prerequisites provide the possibility to
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execute all functions in parallel and distribute the execution to different nodes.
To explain the MapReduce concept the example of the wordcount problem is
commonly used. In Listing 4.11 the pseudo-code of a map and reduce function
to count words in documents is shown.

The map function in the shown code example emits all occurrences of all
words with a count of “1”. The reduce function receives all key-value pairs
and groups them by the received key. The value is added up to a final sum,
the count value of every used word. Due to the independent scope of ev-
ery function the execution of them can be distributed over many nodes. For
example considering 1000 documents which are distributed over ten nodes.
Every node can process 100 documents independently and execute the map
function. Even on one node, documents can be processed in parallel on e.g.
multiple cores. The final key/value pairs can be send to reduce functions on
a separate node. To speed up the process we can also build a hierarchical
reduce system which already builds a local sum on every node and finally
sends over the sums to a centralized reduce function. Furthermore, the inde-
pendence of all functions provides the possibility to easily adapt the process
to an incremental approach by storing the states of all reduce functions. All
those advantages, the flexibility and the simplicity of this model have lifted
the MapReduce approach to a de facto standard of distributed data processing
which is nowadays, implemented by many systems.

Listing 4.12: Map and Reduce function in MongoDB to create rules

1 map: function () {

2 for (var head in this) {

3 if (head !== ’_id ’) {

4 for (var tail in this) {

5 if (tail !== ’_id ’ && tail !== head) {

6 emit(head ,tail);

7 }

8 }

9 }

10 }

11 }

12

13 reduce: function(key , values) {

14 var tailmap = {};

15 for (var i=0; i < values.length; i++) {

16 if (! tailmap[values[i]]) {

17 tailmap[values[i]] = 1;

18 } else {

19 tailmap[values[i]] += 1;

20 }

21 }

22 return {tails: tailmap };

23 }

Therefore, we decided to propose an implementation of the Snoopy algorithm
using MapReduce, as it can be distributed without any additional changes.
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In the following section, we discuss how the rule generation described in Sec-
tion 3.4.1 can be mapped to a scalable MapReduce based approach.

The emit function collects all properties which are used on a specific sub-
ject and computes all permutations of properties to create the corresponding
rules of one subject. The emit function sends one rule consisting of one head
and tail property. The reduce-function collects all rules, groups them based
on their heads and tails and counts the occurrences of the rules. After this
reduce-procedure, the final set contains triples in the form of head→tail and
a corresponding count value.

As described in the previous section, rules with the same head are stored in
the same document in MongoDB. To map the reduced information to this
schema, the reduce-function furthermore, groups all rules information based
on the head of the rule. The MapReduce functions are shown in Listing 4.12.
The generated rules can subsequently be used to compute the set of recom-
mendations as shown in Listing 4.10.

The presented approach using MongoDB does not only represent an implemen-
tation based on a document-oriented store, but furthermore, demonstrates a
generic distributed approach using MapReduce. This distributed approach is
scalable, can be easily adapt to an incremental processing, and improves the
performance when dealing with very large datasets.

4.3 NoSQL: Graph Stores

The SnoopyConcept uses a RDF based model to store information which can
be represented as a graph. Therefore, it is obvious to also consider the usage
of a graph based database to store the raw data. In this section, we discuss
the implementation using a graph database. More information about graph
database models can be found in Section 2.5.3. For the graph-based imple-
mentation we use the property graph model [141] which is supported by one
of the leading graph database storage engines Neo4j2. Property graphs are
attributed, labeled, directed multi-graphs which can be defined as follows:

• A set of vertices, where

– each vertex has a unique identifier.

2http://www.neo4j.com, accessed 2017-07-17
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– each vertex has a set of outgoing edges.

– each vertex has a set of incoming edges.

– each vertex has a collection of properties defined by a map from
key to value.

• A set of edges, where

– each edge has a unique identifier.

– each edge has an outgoing tail vertex.

– each edge has an incoming head vertex.

– each edge has a label that denotes the type of relationship between
its two vertices.

– each edge has a collection of properties defined by a map from key
to value.

Furthermore, Neo4j provides the possibility to label vertices (nodes) and edges
by tags which can be used to describe the type of nodes and edges. The ex-
pressiveness of the property model is not extended by labels as all information
can also be stored by using properties. Although the modeling and querying
is simplified by using labels. For example, nodes can be labeled as subject,
property, or objects as shown in the presented implementation in the next
sections.

4.3.1 Storage Model

The graph-based model of the Snoopy Concept combines the storage of facts
and recommendation-related information in one graph. The proposed model
of the SnoopyConcept is an adapted two-layer model which was introduced by
Huang et al. in [81].

The adapted two-layer model in Figure 4.1 stores all property nodes in the
upper layer and all subject nodes in the lower layer. Neo4j allows to label
nodes which can be used to group or classify nodes and subsequently, can be
used as a filter in queries to restrict the type of nodes. In our model, properties
are labeled with the label prop and subjects are labeled with the label sub.
The edges between the two layers represent usages of properties on the re-
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Property layer

incl. rules

Subject layer

Figure 4.1: Adapted two-layer model according to Huang et al. [81] to store
knowledge and rules

spective subjects and are modeled as relationships of the type HAS PROPERTY.
The value of the property is stored as an additional key value pair on the re-
spective HAS PROPERTY relationship. This data corresponds to the raw data of
the knowledge graph of the SnoopyConcept. All relationships between nodes
on one layer are related to recommendations and represent additional meta
knowledge (cf. Section 4.3.2). The properties are connected by similarity edges
respectively rule edges (relationship type:USED) with a count key-value pair
which specifies the amount of co-occurrences. The dashed edges between sub-
jects are currently not used by the SnoopyConcept but could be derived by
the analysis of used properties to compute e.g., the similarity of subjects.

The resulting model is very flexible as one can directly access recommendation
relevant information as well as data of the knowledge graph itself. The gener-
ation of rule edges are described in the following Section whereas the compu-
tation of recommendation based on this model is presented in Section 4.3.3.

4.3.2 Graph-based Rule Generation

One of the frequently stated advantages of graph based models is the direct
access to data and the usage of relationships without consulting index struc-
tures or computing additional joins. However, the real-time computation of
recommendations in a very large dataset is impossible within a reasonable
timeframe. Consider the cypher query in Listing 4.13 which computes the
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top-5 suitable properties of the subject Innsbruck based on the co-occurrence
frequency. The computation of the query takes several hours and shows that
a real time computation is not advisable.

Listing 4.13: Cypher query to compute co-occurrence on the fly

1 MATCH (start:sub) -[r1:HAS_PROPERTY]->(p1:prop)

2 <-[r2:HAS_PROPERTY ]-(s:sub) -[r3:HAS_PROPERTY]->(p2:prop)

3 WHERE start.name = ’http :// dbpedia.org/resource/Innsbruck ’

4 WITH p2, count(p2) as frequency

5 ORDER BY frequency DESC

6 LIMIT 5

7 RETURN p2, frequency;

Therefore, the computation of recommendations has to be accelerated by pre-
computing rules. The rule generation cannot be done by using one query in
Neo4j as the intermediate results are too big and the optimizer is not able to
cope with this problem. To solve this issue we split the rule computation to
one computation per property which is shown in Listing 4.14.

Listing 4.14: Query to compute rules based on one given property

1 MATCH (p1:prop)<-[r1:HAS_PROPERTY ]-(s:sub)

2 WHERE id(p1) = ${ID}

3 WITH DISTINCT s as s2,p1

4 MATCH (s2:sub)-[r2:HAS_PROPERTY]->(p2:prop)

5 WHERE id(p2) <> ${ID}

6 WITH p1,p2 ,count(DISTINCT s2) as freq

7 MERGE (p1)-[r:USED]-(p2)

8 ON CREATE SET r.count = freq

9 ON MATCH SET r.count = r.count + freq;

To compute all rules we fetch all properties and their ids in the first step.
Subsequently, we execute the query shown in Listing 4.14 for every property
which is given by the variable ${ID}. The query creates a relationship called
USED between two properties if they are used together on a subject. Further-
more, the relationship holds a counter which defines the number of subjects
that contain both properties. Those relationships holds exactly the same in-
formation as all the rules presented in the relational approach in Section 4.1
and can be subsequently used to compute recommendations as described in
the following section.

4.3.3 Graph-based Recommendation Algorithm

Due to the insufficient performance when computing recommendations on the
fly as shown in Listing 4.13, the query presented in Listing 4.15 corresponds
to the basic algorithm presented in Section 3.4.1 and is based on rules which
are stored as USED-relationships in the graph store.
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Listing 4.15: Compute recommendation based on USED-relationships

1 MATCH (head:prop) -[r:USED]-(tail:prop)

2 WHERE

3 head.name = ’http :// dbpedia.org/property/areaTotalKm ’

4 OR head.name = ’http :// dbpedia.org/property/postalCode ’

5 RETURN tail.name ,count(r) as cx ,sum(r.count) as cglobal

6 ORDER BY cx DESC , cglobal DESC LIMIT 10;

7

8 +--------------------------------------------------------------+

9 | tail.name | cx | cglobal |

10 +--------------------------------------------------------------+

11 | "http :// dbpedia.org/property/populationTotal" | 2 | 307308 |

12 | "http :// dbpedia.org/property/populationAsOf" | 2 | 306218 |

13 | "http :// dbpedia.org/property/longd" | 2 | 299958 |

14 | "http :// dbpedia.org/property/latd" | 2 | 299942 |

15 | "http :// dbpedia.org/property/subdivisionType" | 2 | 292618 |

16 | "http :// dbpedia.org/property/subdivisionName" | 2 | 287156 |

17 | "http :// dbpedia.org/property/longew" | 2 | 286244 |

18 | "http :// dbpedia.org/property/latns" | 2 | 286138 |

19 | "http :// dbpedia.org/property/longm" | 2 | 273188 |

20 | "http :// dbpedia.org/property/latm" | 2 | 273164 |

21 +--------------------------------------------------------------+

22 10 rows

23 290 ms

By defining the starting points respectively rule heads, the query fetches all
connected properties or rule tails and ranks the result list as shown by the
context count and global count value (cf. Section 3.4). The Listing consists of
an example query and the corresponding result set of the query.

Listing 4.16: Graph based normalized hybrid (70:30) recommendation

1 MATCH p=(head:prop)-[r:USED]-(tail:prop)

2 WHERE

3 head.name = ’http :// dbpedia.org/property/locationCountry ’

4 OR head.name = ’http :// dbpedia.org/property/name ’

5 OR head.name = ’http :// dbpedia.org/property/logo ’

6 OR head.name = ’http :// dbpedia.org/property/website ’

7 WITH tail ,count(r) as context ,sum(r.count/tail.count) as confidence

8 WITH min(context) as mincontext , max(context) as maxcontext ,

9 min(confidence) as minconfidence , max(confidence) as maxconfidence

10 MATCH (head:prop) -[r:USED]-(tail:prop)

11 WHERE

12 head.name = ’http :// dbpedia.org/property/locationCountry ’

13 OR head.name = ’http :// dbpedia.org/property/name ’

14 OR head.name = ’http :// dbpedia.org/property/logo ’

15 OR head.name = ’http :// dbpedia.org/property/website ’

16 RETURN

17 tail.name ,

18 count(r) as context ,

19 sum(toFloat(r.count)/tail.count) as confidence ,

20 (count(r)-mincontext)/toFloat(maxcontext -mincontext) as contextnorm

,

21 (sum(r.count/tail.count)-minconfidence)/toFloat(maxconfidence -

minconfidence) as confidencenorm ,

22 ((count(r)-mincontext)/toFloat(maxcontext -mincontext) * (1 - ALPHA)

) +

23 (ALPHA * (sum(r.count/tail.count)-minconfidence)/( maxconfidence -

minconfidence)) as score
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24 ORDER BY score DESC LIMIT 10;

25

26 +------------------------------------------------------------------+

27 | tail | cnxt | conf. | cnxtnorm | conf.norm | score |

28 +------------------------------------------------------------------+

29 | patents | 4 | 8.0 | 1.0 | 1.0 | 1.0 |

30 | trademarkedSlogans | 4 | 8.0 | 1.0 | 1.0 | 1.0 |

31 | annualNetSales | 4 | 8.0 | 1.0 | 1.0 | 1.0 |

32 | siteType | 4 | 8.0 | 1.0 | 1.0 | 1.0 |

33 | developerWebsite | 4 | 6.6 | 1.0 | 0.75 | 0.82 |

34 | ceasedTrading | 4 | 6.0 | 1.0 | 0.75 | 0.82 |

35 | numberOfLocations | 4 | 6.0 | 1.0 | 0.75 | 0.82 |

36 | helpline | 4 | 5.0 | 1.0 | 0.62 | 0.73 |

37 | tradingAs | 3 | 6.0 | 0.66 | 0.75 | 0.72 |

38 | keyDistributor | 3 | 6.0 | 0.66 | 0.75 | 0.72 |

39 +------------------------------------------------------------------+

40 10 rows

41 1248 ms

The context-sensitive algorithm which is described in Section 3.4.3 aims at
finding the right balance between popular properties and most suitable prop-
erties regarding the context. In Listing 4.16 the extended algorithm (cf. Sec-
tion 3.4) which incorporates the normalized context and confidence values by
applying a weight ALPHA is represented as a Neo4j query (output shortened).
The weighting factor ALPHA which can be defined in the range between 0 and
1 indicates if the context score or the confidence score has the higher influence
on the final score. For example a weighting factor of 0.5 indicates a balanced
weighting between both scoring values.

4.4 Storage Model Evaluation

In this Section we evaluate and discuss our previously proposed storage mod-
els in respect to performance. As the SnoopyConcept is compatible to all
triple based storage systems (cf. Section 4) which are usually optimized for
querying semi-structured data [56, 142, 120] we do not cover query facilities
in this evaluation but focus on the evaluation of the previously presented
computation of recommendations in the context of the SnoopyConcept. The
evaluation covers the following three main steps in the process of computing
recommendations:

• Import of raw data of the evaluation dataset

• Creation of rules

• Computation of recommendations
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All three steps are examined for every presented storage model in this chapter.
The used database systems and the according version are listed in Table 4.5.
The evaluation was conducted using two Intel R© Xeon R© CPU E5530 @ 2.40GHz
(8 cores, 16 threads in total), 192 GB main memory, RAID-5 5xSAS-HDD900
10k, and CentOS Linux release 7.3.1611. For the performance evaluation we
imported a DBpedia dump which is also used for the evaluation in Chapter
6. The dataset consists of 59 million triples which results in 701 million rule
instances. The detailed structure of the dataset is described in Section 6.1.1.

Storage Model System Version Engine

Relational Model MySQL 5.7.18 InnoDB

NoSQL / Document based MongoDB 3.4.5 WiredTiger

Graph Model Neo4j 3.2.0 Neo4j

Table 4.5: Specifications of Databases used in the Evaluation

Performance numbers regarding the data import can be found in Figure 4.3.
Figure 4.2 depicts the database sizes after the import of the dataset. The
import in MySQL was realized by piping a pregenerated SQL file including all
insertion commands to the native client. Every insertion command triggers a
stored procedure in MySQL which coordinates the import including id lookups
and dictionary table management. For the MongoDB import the PHP mon-
godb client version 1.2.9-1 and PHP 7.1 was used. To decrease the import
time, the import process used write tasks3 consisting of 1000 bulk upsert com-
mands each. In Neo4j the native csv import command4 was used to import
a pregenerated csv file containing all triples. The periodic commit value was
set to 10,000 to increase the import performance.

After the successful import, the rule generation for the individual systems
were executed. The rule generation in MySQL was implemented by using a
procedure according to the approach described in Section 4.1.5. For MongoDB,
a map-reduce job was created to generate all rules (cf. Section 4.2.3). The map-
reduce approach provides the possibility to scale the rule generation process
and distribute the workload to multiple nodes. In this evaluation the map-
reduce job was not distributed and was executed on one single node only.
The rule generation in Neo4j was realized using a bash script which sends a
generation query for every property in the system as described in Section 4.3.2.
The time consumption for the rule generation can be found in Figure 4.3.

3https://docs.mongodb.com/manual/reference/method/db.collection.bulkWrite/, ac-
cessed 2017-07-17

4http://neo4j.com/docs/developer-manual/current/cypher/clauses/load-csv/, ac-
cessed 2017-07-17
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MySQL takes 574 minutes for importing the dataset and therefore, is the
slowest database performing the import task. This can be led back to the
manually implemented dictionary approach (cf. Section 4.1.3) which perform
several lookups with every inserted triple, e.g., for subject, property, object,
language, type, etc. MongoDB and Neo4j receive all strings without any pre-
processing and therefore, perform similar for the import, i.e., 118 minutes for
MongoDB and 203 minutes for Neo4j. Nevertheless, both systems also aim
at compressing data but apply the compression natively and therefore, more
efficiently.

Neo4j aims at reducing disk usage by applying an automated dictionary com-
pression approach5 similar to the dictionary approach we introduced in Sec-
tion 4.1.3) for the relational model. The Neo4J compression algorithm tries
to predict if it is more efficient to store a value inline or in a separated string
storage by applying length based rules. For the used DBpedia dataset, the
Neo4j string store consumes 2.59 GB of disk space which corresponds to the
disk usage of the dictionary tables in MySQL.

MongoDB has the lowest disk space consumption of less than 3 GB which
can be led back to the compression6 that is applied by the WiredTiger stor-
age engine. By default, WiredTiger uses block compression with the snappy
compression library and prefix compression for all indexes. The imported DB-
pedia dataset contains mainly URIs using the same namespaces which leads
to a very efficient compression.

MySQL stores the id based triple data in 3.2GB and allocates another 2.3GB
for the lookup tables. To speed up queries to reason on the raw data, we
proposed five additional indexes besides the primary key spo index as described
in Section 4.1.3. Every additional index on the main triple table requires about
1GB which results in 5.5GB additional disk space. In total MySQL consumes
11,082 GB for all data and additional index structures. For the computation
of recommendations those additional indexes are not used.

5https://neo4j.com/docs/operations-manual/current/performance/property-

compression/, accessed 2017-07-17

6https://docs.mongodb.com/manual/core/wiredtiger/#compression, accessed 2017-07-17
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In comparison to the raw data, the rules are very compact in all database
systems. This compact size has an impact on the performance of recommen-
dation computation as it is mainly based on rules. MySQL takes the highest
amount of 361 MB for storing the rules. Nevertheless, this amount of data can
be easily hold in main memory and thus, provide the required data efficiently
to the recommender algorithm.

It is also important to mention, that all databases use just one CPU core for
the import. For the rule generation MongoDB could be scaled by using a
cluster setup of several instances on the same machine. This approach would
speed up the rule generation drastically as the map reduce approach scales
with the number of nodes in the cluster. MySQL and Neo4j scale on a query
basis which results in a parallel execution of queries sent by multiple clients.
As the import process is single threaded and thus, only one client is connected
to the databases, MySQL nor Neo4j can use their parallelization strategy for
the import or rule generation.
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5 initial properties

3 initial properties
2.86

4.65

10.16

17.01

4.86

6.1

9.68

13.28
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102.4
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Figure 4.4: Computing top-10 recommendations (time in milliseconds)

For the computation of recommendations, Figure 4.4 shows the performance
of MySQL, MongoDB, and Neo4j. The presented time is needed for the com-
putation of top-10 recommendations for an input of 3,5,10, and 15 initial
properties. The used algorithm corresponds to the algorithm presented in
Section 3.4.3 which incorporates the confidence and context. For this evalua-
tion, we used the best performing ranking strategy “context confidence” (cf.
Section 17) which applies an order by context,confidence. The evalua-
tion was performed by sending a pregenerated set of 1,000 recommendation
calls to the database systems using the native database clients. To be able
to compare the systems, the random properties are pregenerated and re-used
for every database system. Thus, every database receives the same starting
properties and therefore, computes exactly the same recommendations. The
measured time includes the creation of one connection to the local server, the
transfer of 1,000 queries incl. initial properties to the server, the execution
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of 1,000 queries and the transfer of the computed recommendation set back
to the client. All evaluations were executed six times as the first run aims
at warming the caches and five other runs were used to calculate the overall
average time to compute a recommendation set.

In general, it can be seen in Figure 4.4 that every database system is able
to compute recommendation below 100ms. Even when adding the network
latency to the client and the time to render the user interface, the performance
is sufficient to provide structure recommendations, e.g., additional properties.
For recommendations which already guide the user during typing, such as
auto-completion, the requirements are more strict and the latency should stay
below the limit of 100ms in total for having the user feel that the system is
reacting instantaneously [124, 35, 116].

MongoDB and MySQL are able to meet this criteria by providing ten recom-
mendation in less than 18ms. The fastest computation based on three initial
properties can be achieved by MySQL in less than three milliseconds. If more
properties are initially present, MongoDB is able to provide recommendation
faster than MySQL. This can be led back to the bigger intermediate results
which slow down the JOIN performance in MySQL. The reason that Neo4j
computes recommendations six times slower than Mongodb and ten times
slower than MySQL is that Neo4j does not stored the rules in a clustered
memory layout. Nevertheless, Neo4j is more flexible when querying the raw
data as the graph-structure can be directly exploited [13].

Furthermore, we also compared the MySQL performance of the simple order-
ing, and the normalized and weighted ranking as presented in Section 3.4.3 for
ten properties. The complex ranking takes 15.98ms on average in comparison
to 10.16ms for the simple ranking, i.e., an overhead of 50% which does not
lead to better results as shown in Section 17.

Due to the evaluated database performance and the presented results, we
recommend to use MySQL or MongoDB when computing recommendations
for real time interaction with the user. For a more holistic approach and other
use cases requiring complex graph queries, Neo4j might be better suited.

4.5 Storage Models Summary

In this chapter, we presented the implementation of the SnoopyConcept us-
ing three different storage models, namely the relational model, document-
oriented model and the graph model. We also discussed the efficient rule based
computation of recommendations in all models and showed that the relational
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model provides the best performance with our dataset in terms of recommen-
dation computation, i.e., is able to compute top-10 recommendations in less
than 3ms.
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CHAPTER 5

SnoopyConcept Showcases

In this chapter, we present multiple showcases which we developed to prove
that the SnoopyConcept and its algorithms can be applied to different domain
to improve quality and quantity of knowledge in information systems. The
presented prototypes were also used in the evaluation of the SnoopyConcept
which is described in detail in Chapter 6.

5.1 First Reference Implementation: SnoopyDB

The described SnoopyConcept was implemented in a first prototype which is
called “SnoopyDB”. A screenshot of the SnoopyDB prototype can be seen in
Figure 5.1. This figure shows the screen of a user entering information about
the University of Innsbruck. The user already entered four property-value
pairs about the foundation year, the founder, the number of professors and
the official website of the University of Innsbruck. The three additional rows
displayed in grey font mark the properties which are recommended by the
system. The value fields corresponding to these properties already contain
exemplary values. This way, the user can immediately recognize the type of
the value, e.g. a numeric value for employees. The box on the right side of the
screenshot contains further suitable properties for the current subject. These
properties can easily be added to the input form by clicking on the arrow icon.
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The screenshot also shows how the system automatically detects the data type
of the entered information. In line 4, a link for the website of the university
is created. The system automatically detected that a big percentage of the
values belonging to the property website were stored as links and therefore,
the system suggests the insertion of a link to the user. In this case, the user
accepted this suggestion and entered the URL of the official website of the
University of Innsbruck.

Figure 5.1: Screenshot of the SnoopyDB Prototype

SnoopyDB was the first reference implementation in 2009 and implements the
algorithm (without user modeling) presented in Section 3.3. The prototype
was used to perform the online evaluation which is presented in Section 6.1.3
and was published in [61].

5.2 SnoopyTagging

Another use case of the SnoopyConcept can be found in the area of tagging.
The so-called SnoopyTagging [63, 34] prototype covers the field of collabora-
tive online tagging which has encountered a tremendous success in the last
decade. The tagging paradigm enables users to annotate online resources such
as images or bookmarks with keywords aiming at creating a categorization to
simplify the search and retrieval of resources. Especially in large collaborative
systems, the definition of a fixed set of categories in advance is not feasible
and would limit the flexibility of the system. Hence, tagging is very import
to bring some kind of order to the possibly existing chaos. One major feature
of tags is the simple usage as tags may be chosen freely without any restric-
tions. Thus, tags can be used to describe different aspects of online resources
by the users. Consider the example of an image tagged with “Robert Capa”.
By just considering the tag, it is not clear whether Robert Capa is pictured
on the photo, whether Robert Capa is the photographer or the picture shows
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Robert Capa’s house. SnoopyTagging aims at solving this problem by adding
contextual meta-information to tags while at the same time increasing the
homogeneity of the resulting tag-vocabulary by facilitating a recommender
system. As a showcase example, we implemented our approach on top of
Flickr which is described in the following sections.

5.2.1 Structured Tags

The SnoopyTagging Concept is based on the SnoopyConcept and introduces
Structured Tags. The SnoopyConcept based self-learning recommendation
engine aims at decreasing the proliferation of tags and homogenize the tag
vocabulary. The paradigm of Structured or Contextualized Tags, which was
first introduced as “The Poor Man’s RDF” [11], represents the basis for the
SnoopyTagging system. Structured Tags consist of two parts which are di-
vided by a delimiter sign (a colon in our case): context:tag. The first part of
a Structured Tag defines the context of the actual tag, whereas the actual tag
is specified after the delimiter sign. As most of today’s tagging platforms allow
colons in tags, the backward compatibility of SnoopyTagging is guaranteed.
Structured Tags enable the user to provide tags with context, e.g. the tag
photographer:Robert Capa expresses that Robert Capa is the photographer
of a certain photo.
The disadvantage of freely chosen tags is the increasing latent heterogene-
ity of the resulting folksonomies (cf. Section 2.4.1). This fact is crucial in
online mass-collaboration tagging systems, as there are thousands of differ-
ent users from different social levels and backgrounds who add tags in dif-
ferent domains and settings. Consider e.g., the tags takenBy:Robert Capa

and photographer:Robert Capa which are differentiated during the search
process although they are semantically equivalent. We tackle this problem by
applying the SnoopyConcept and creating a recommender engine which aims
at providing suitable tags and contexts to homogenize the used vocabulary
and avoid the use of synonyms.

5.2.2 Recommendations based on the SnoopyConcept

In order to create and maintain a homogeneous set of both contexts and tags,
we make use of our developed Snoopy approach (see Chapter 3) and imple-
mented SnoopyTagging (see Screenshot Figure 5.2), a first prototype based
on the Flickr platform. The Snoopy approach basically aims at dealing with
the problem of heterogeneous vocabularies by providing the users with suit-
able recommendations. SnoopyTagging includes recommendations for both
the context and the actual tag of a Structured Tag. As these recommenda-
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tions are computed based on all tags which have previously been entered by
users, recommendations are strongly tied to the community and its vocabulary.
We distinguish between two types of recommendations:

(i) Additional Structured Tags are recommended based on co-occurrence anal-
ysis (see Section 3.3) of the already entered tags and leads to the suggestion
of further applicable contexts. If e.g., the tag photographer:Robert Capa

was already specified, the contexts camera:? and location:? may be rec-
ommended to the user during the tag insertion process. Hence, this type of
recommendations aims at encouraging the user to (a) use Structured Tags and
(b) enter more (meta-) information.

(ii) The extended auto-completion feature recommends context and tags dur-
ing the typing of the user. This intelligent feature recommends the re-usage
of contexts and tags. Thus, it avoids the insertion of additional synonyms
(see Section 3.3.2) and leads to a more homogeneous vocabulary. E.g., if loc
has been entered, the key location and according values, e.g., Vienna are
recommended.

Figure 5.2: Prototype SnoopyTagging

The SnoopyTagging approach incorporates the user co-occurrence space to
personalize both types of recommendations as described in Section 3.5. Once
a user entered a context a, the system computes those tags co-occurring with
the context a within both the set of global tags (of all users) and user-specific
tags (tags used by the current user). As only the top-5 recommendations
are shown in the interface, a ranking function is applied. The ranking is
based on the co-occurrence rate of the already entered tags on the respective
resource and the remaining tags within the datasets (ranking of the global
set: rankglobal, ranking of the user-specific set: rankuser). For the final set of
recommendations which is based on both previously computed sets (user and
global co-occurrence), we propose to use a hybrid ranking algorithm rank =
γ · rankglobal + (1 − γ) · rankuser with the factor γ which defines the weight
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of the final rank between the user-specific and global set of recommendations
(cf. Section 3.5.2). In our experiments a value of γ = 0.1 turned out to be
beneficial.

We published the SnoopyTagging approach in 2012 [63] including an evaluation
which shows that the implemented prototype based on Flickr adds context to
simple tags and homogenizes the tag vocabulary. The conducted evaluation
(cf. Section 6.2 showed the acceptance of the concept of contexts by the users.
Our experiments also showed the frequent re-usage of tags and the creation
of a homogeneous tagging vocabulary due to the strong acceptance of the
underlying SnoopyConcept based recommendation engine.

5.3 hash5

The previously described SnoopyDB prototype has been designed to store
facts and information in a structured format while the SnoopyTagging ap-
proach aims at annotating already existing resources by meta data. The use
case explained in this section combines the two approaches by providing a way
to store unstructured notes and structured meta information. This use case
is located in the area of personal information manager (PIM) systems [174]
and was covered by a prototype called hash5 which integrates the SnoopyCon-
cept.

5.3.1 Main Concepts

The main purpose of a PIM system is to store and manage personal informa-
tion, such as notes, addresses, todos and calendar dates. hash5 provides the
possibility to store textual entries and add semi-structured meta information
to each entry. The meta information can be added by using a novel hashtag
model which extends the classical hashtag model which is used for example
by Twitter and Facebook.

The classical hashtag model was established in Twitter by its users. Twitter
allows textual entries only and doesn’t provide methods to categorize tweets.
Due to this limitation, Twitter users introduced the idea to prefix tag or
category information by the hash sign [27]. This simple concept did not need
any further support by Twitter, is easy to understand by all users and provides
a great flexibility as the vocabulary is not restricted. This hashtag concept
has been become very popular and is used by many platforms. Even Facebook

109



Chapter 5 SnoopyConcept Showcases

Figure 5.3: Dashboard view of hash5 (desktop/mobile screen)

supports hashtags since 2013 1 to provide a flexible additional categorization
facility of Facebook messages. hash5 has taken up this concept of hashtags
and lifted the concept to a two-dimensional tagging model. The classical
hashtag model allows only to specify one word respectively one dimension.
It is not possible to specify a context. Consider the example of the hashtag
#2013-01-01 10am which is attached to a textual calendar entry of a meeting.
In this example it is not clear if the date corresponds to the start of the
meeting, the end of the meeting, the time of the reminder or the creation
timestamp of the entry itself. This ambiguity can only be resolved by adding
a context which is not possible by using the classical one dimensional hashtag
model. The idea of adding context to tags was already proposed in the article
“The Poor Man’s RDF?” by Buzz Andersen in 2005 [11] and is also used in
the SnoopyTagging approach presented in Section 5.2. Andersen proposed to
enhance tagging systems by introducing a split symbol which splits up the tag
to a context on the left hand side of the splitting symbol and the tag value
itself on the right hand side. Consider again the example, this approach would
lead to the hashtag #start:2013-01-01 10am which indicates the start of the
meeting at 10 am.

Figure 5.3 shows the responsive dashboard of hash5 which gives an overview of
all notes and todos. One can already recognize the huge amount of hashtags
which are used to categorize, set the status of todos or specify additional
structured meta-data such as the start and end time of an appointment. Also,
the columns are managed by hashtags and correspond to search queries which
contain hashtags.

1http://www.theguardian.com/technology/2013/jun/13/facebook-to-introduce-

clickable-hashtags, accessed 2017-07-17
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By relying on hashtags that heavily and furthermore, introducing another
dimension to tags—the context of a tag—the possible tagging-space grows
tremendously which leads even in a quite small scope of private notes to prolif-
eration of tags as described in Section 2.4.1. hash5 applies the SnoopyConcept
to prevent the proliferation which is described in the following section in more
detail.

5.3.2 Recommendations based on the SnoopyConcept

To simplify the usage of those structured tags and to cope with the prolifer-
ation of tags, recommendations support the user during the insertion of new
chunks of information to the hash5 system. The hash5 system implements the
SnoopyConcept and furthermore, provides additional recommendation mecha-
nisms. hash5 recommends and auto-complete keys and values and incorporate
the following information for the ranking and recommendation algorithm.

• Already used tags in the current entry

• Key of the current tag when recommending values

• Full-text of the current entry

• Popularity of keys and values

Besides the already known types of recommendations of the SnoopyConcept
which are mainly based on the usage respectively co-occurrence of tags and
are provided in hash5, the incorporation of the full-text of an entry to im-
prove the recommendation system is very promising. Especially in the area of
PIM systems which often contain similar information, the correlation of text
and tags can be exploited. Consider an invite to a recurring meeting with a
customer. The invite usually contains information about the company, title,
agenda, attendees, signatures and information about the meeting point. This
information can be used to suggest hashtags which were already used in a
previous meeting with the same or similar customer. By using those recom-
mendations, e.g., the process of classifying entries in the PIM system can be
accelerated and improve the user experience. A screenshot of the edit window
which also contains hashtag recommendations below the entry field is shown
in the right screenshot of Figure 5.4.

The recommendation system is also integrated in the search process as shown
in the left screenshot of Figure 5.4. By suggesting and auto-completing hash-
tags during the search process, the exploration of a potentially huge amount
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Figure 5.4: Search and edit an entry in hash5

of entries in a PIM is optimized. Every search can also be saved and shown
as a dynamic column in the dashboard as shown in Figure 5.4.

The hash5 project was developed and improved by the authors of the following
Bachelor theses which contain more information about the technical realization
of several clients and the corresponding backend systems.

• M. Schmakeit. Extension and Optimization of the Hash5-Server - a
Hashtag-based PIM-System. Bachelor’s Thesis, University of Innsbruck,
Jan. 2015. supervised by Eva Zangerle, Wolfgang Gassler, Günther
Specht

• C. Esswein. Development of a responsive webapp for a hashtag based
PIM system. Bachelor’s Thesis, University of Innsbruck, Nov. 2014.
supervised by Wolfgang Gassler, Eva Zangerle, Günther Specht

• C. Laqua. Development of a responsive Android client for a hashtag
based PIM system. Bachelor’s Thesis, University of Innsbruck, Nov.
2014. supervised by Eva Zangerle, Wolfgang Gassler, Günther Specht

• M. Wolf. Extension of Information Types for an Android Client for a
Hashtag-based PIM System. Bachelor’s Thesis, University of Innsbruck,
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Oct. 2014. supervised by Eva Zangerle, Wolfgang Gassler, Günther
Specht

• T. Fraydenegg. Development of a light-weight HTML5 Web Client for an
Information System adapting Social-Media Concepts. Bachelor’s Thesis,
University of Innsbruck, June 2013. supervised by Wolfgang Gassler,
Eva Zangerle, Günther Specht

• R. Bierbauer. Development of a light-weight web client for a hashtag
based PIM system. Bachelor’s Thesis, University of Innsbruck, Nov.
2013. supervised by Wolfgang Gassler, Eva Zangerle, Günther Specht

• M. Müller. Development of a self-learning recommendation module for a
hashtag based PIM system. Bachelor’s Thesis, University of Innsbruck,
Nov. 2013. supervised by Wolfgang Gassler, Eva Zangerle, Günther
Specht

• D. Hoppe. Social-media concepts in personal information management
systems. Bachelor’s Thesis, University of Innsbruck, June 2012. super-
vised by Wolfgang Gassler and Eva Zangerle

5.4 Wikidata

The Wikidata platform was introduced in 2012 and since then, has evolved to
a central, consistent and structured knowledge base, which is maintained by
an active community. The knowledge captured in Wikidata is semi-structured
and is stored using a very similar format to the SnoopyConcept storage format.
The main goal of Wikidata is to provide facts which are human and machine
readable and can be used across different languages as stored facts are not tied
to a single language [170]. The data provided is facilitated by an increasing
number of applications with Wikipedia being the most popular one. As of May
2017, Wikidata features more than 26 million data items, which in principle
“represent all the things in human knowledge, including topics, concepts, and
objects”2. E.g., Albert Einstein or the city of New York are such items. On
Wikidata, these items are described by so-called statements, where a property
serves as a descriptor for a value representing the actual information. E.g., a
property of the item Albert Einstein is dateOfBirth and the according value is
1879-03-14. Wikidata items and the according statements have been curated

2https://www.wikidata.org/wiki/Help:Items, accessed 2017-07-17
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by approximately 484 million edits3. On average, each item on the platform
is shaped by 18 edits performed by either by humans or bots.

As of 2014, 90% of all edits were made by bots as the Wikidata project strives
to automate tasks and outsources these to bots [170]. However, still roughly
one million edits are performed by human users every month and hence, con-
tributions by human users play an important role. To improve this manual
process of inserting new facts, the Wikidata platform supports its committed
community by a so-called “property suggestor” which was introduced in 2014.
This tool assists the user in entering information by providing suggestions for
novel properties which are likely to be added to the current data item and is
described in the following section.

5.4.1 Wikidata Property Suggestor

The Wikidata platform provides users with a property suggestor which aims
at assisting users when adding new statements to a given Wikidata item. The
approach taken by the Entity Suggester is based on the Predicate Suggestion
approach by Abedjan and Naumann which aiming to enrich RDF datasets by
a set of rule mining approaches [3, 2]. This approach is also inspired by tra-
ditional Association Rules [9]. Abedjan and Naumann claim that once RDF
triples are grouped by their subject, traditional association rules can be facil-
itated to provide predicate suggestions to the user. Based on the previously
inserted predicates for a given subject, this approach computes predicates to
be suggested based on all rules that incorporate these predicates as heads of
their rules. Consequently, the predicates appearing in the consequences of
those rules are extracted and form the set of possibly suggested predicates.
These candidate predicates are subsequently ranked by the sum of the con-
fidence values of all rules that actually have the corresponding predicate as
their consequence.

The Wikidata Property Suggestor further adds so-called “classifying” proper-
ties, which are the properties “instanceOf” and “subclassOf”. The property
instanceOf refers to the fact that the described item “is a specific example and
a member of that class”4, whereas the subclassOf property signifies that all
instances of these items are instances of the given superclass5. For the recom-
mendation approach, these properties are treated differently as for these, not
only the property is used as a head of rules, but the combination of the prop-

3https://www.wikidata.org/wiki/Special:Statistics, accessed 2017-07-17

4https://www.wikidata.org/wiki/Property:P31, accessed 2017-07-17

5https://www.wikidata.org/wiki/Property:P279, accessed 2017-07-17
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erty and each occurring object. I.e., (instanceOf, human) → dateOfBirth
rules are formed and added to the set of rules. This allows to add further in-
formation to the recommendation computation process as information about
the type of the given data item can be inferred and exploited (if available).
Naturally, such information is valuable for the recommendation of suitable
properties.

As this concept heavily rely on manual classification using an previously de-
fined classification system we analyzed in [184] if the manual classification is
beneficial and if the algorithm can be furthermore improved by applying ad-
ditional elements of the SnoopyConcept. The combination of the algorithms
are described in the following section.

5.4.2 Incorporating the SnoopyConcept Algorithm

The SnoopyConcept recommendation approach is also based on association
rules but furthermore incorporates the context to improve the ranking of rec-
ommendations. In this case, the notion of context refers to the rules’ head as
these describe the context a given property is embedded in (cf. Section 3.4).
The more such information about a property is available, the broader the foun-
dation for a recommendation of the property. Therefore, we utilize the number
of different contexts a rule is embedded in for the ranking computation. I.e.,
we count the number of distinct rules that actually have a given property as
its consequence. For this context-based approach, we rank properties by the
number of distinct rules leading to the property. I.e., the higher the number
of distinct rules with a given property in the consequence, the higher the rank
of the property. In case of a rank tie, we further rely on the number of total
occurrences of the particular rule to resolve the tie.

We propose to create hybrid variants of the three recommender approaches
presented previously as we identified one distinctive characteristic for each of
the presented approaches: (i) using the sum of the rule confidences of all appli-
cable rules for ranking in case of the algorithm by Abedjan and Naumann [3,
2] (AN) (ii) utilizing classifying properties to add type information in the
case of the Wikidata-approach (WD) and (iii) the use of context–information
for ranking of property candidates in case of the SnoopyConcept approach
(SN).

We evaluated each of the approaches extended by the distinctive character-
istics of the other two recommendation algorithms presented. This includes
combining the SN simple approach with classified properties as described in
Section 5.4.1 (SN classified), as well as adding context to perform the ranking
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in this hybrid configuration (SN context classified). A second stream of hy-
brid configurations results from taking the Predicate Suggestion approach as
described in the previous section and combining it with Snoopy’s contextual
ranking approach (AN context) and lastly, we also evaluated the extension of
the WD approach with Snoopy’s context ranking approach (WD context).

The evaluation was focused on the Wikidata use case and therefore, a Wiki-
data dataset for the evaluation was used. The evaluation results which are
presented in detail in Section 6.1.2 show that in the context of Wikidata the
Wikidata Entity Suggester (WD) works better than the other presented ap-
proaches. In the course of our analyses, we identify two key aspects which
are essential for the quality of recommendations: incorporating classifying
properties and making use of contextual information for ranking the property
recommendation candidates. Combining the current Wikidata Entity Sug-
gester approach with Snoopy’s ranking strategy, which facilitates contextual
information, significantly increases the performance of the current Wikidata
recommender approach.

5.5 Summary

In this chapter it was shown that the SnoopyConcept can be used in various
fields to improve the insertion of data. The basic idea of the SnoopyConcept
is to incorporate the user during the insertion of knowledge to a traditional
information system such as Wikipedia. This was shown by the SnoopyConcept
reference implementation called SnoopyDB (cf. Section 5.1). The extension
of the basic SnoopyConcept algorithm by user modeling was demonstrated
by SnoopyTagging (cf. 5.2). Furthermore, SnoopyTagging proves that the
SnoopyConcept is very flexible as it is compatible to common tagging systems
and can be easily implemented and enhance classic tagging approaches. hash5
which is explained in Section 5.3 demonstrates the usage of the SnoopyCon-
cept in a completely different field. PIM systems have other requirements
but nevertheless, can benefit from the implementation of the SnoopyConcept.
Since the first introduction of the SnoopyConcept in 2010 [61, 182] very similar
approaches were presented by other authors. An implementation by Wikidata
which conforms to the SnoopyConcept is discussed in Section 5.4 proves that
the approach of guiding the user during the insertion of knowledge has emerged
to mainstream.

The evaluation of all presented SnoopyConcept approaches, showcases and
implementations can be found in the following Chapter 6.
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Evaluation

In this chapter all SnoopyConcept algorithms are evaluated under different
aspects. In the first section we evaluate the core recommendation algorithms
by conducting offline and online evaluations. Furthermore, we compare the
SnoopyConcept with the Wikidata’s Property Suggestor and evaluate the pro-
posed context extensions for it. Our conducted user-centric experiments pre-
sented in Section 6.1.3 will shed more light on the user acceptance of the
SnoopyConcept approach. In the last section we evaluate the personalized
SnoopyConcept algorithm using the SnoopyTagging prototype to show if per-
sonalization is able to increase the accuracy of the SnoopyConcept.

6.1 Recommendation Algorithms

In this section, the recommendation algorithms which build the basis of the
SnoopyConcept are evaluated. Two major test approaches were chosen to
verify the recommendation algorithm and prove that the computed recom-
mendations are suitable [151, 75]. The first evaluation section comprises an
offline evaluation which evaluates the performance of the algorithms on a large
mass-collaboratively created dataset which is based on Wikipedia. In the sec-
ond section we compare the SnoopyConcept with the Wikidata’s Property
Suggestor by conducting an offline evaluation using the Wikidata dataset.
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We discuss differences and assess the accuracy of our proposed context ex-
tension of the Property Suggestor described in Section 5.4. The second test
approach evaluates the SnoopyConcept respectively the recommendation al-
gorithms by conducting an online evaluation using the SnoopyDB prototype.
This test incorporates real users and assesses the SnoopyConcept in a real-life
environment to show if recommendations are accepted by the users and the
quality and quantity of information in the system can be increased. In the
last section we evaluate the personalized SnoopyConcept algorithm based on
the SnoopyTagging prototype presented in Section 5.2. We determine if the
personalization approach is able to increase the accuracy of recommendations
and support the user during the insertion process.

6.1.1 Offline Evaluation

The idea of offline evaluations is to evaluate an algorithm or system by using
a pre-existing dataset and simulate the user behavior based on this dataset.
For example, in the domain of recommender systems, datasets including user
ratings are often used to verify the performance of a recommendation algo-
rithm [151, 75]. Therefore, the dataset is split into a training and a test set.
The performance of an algorithm is measured by using the training set as a
basis for the recommendation algorithm. The computed recommendations are
subsequently compared with the test set to assess their performance.

The usefulness of offline evaluations is mainly dependent on the underlying
dataset which has to be as similar as possible to the real environment in which
the recommendation algorithm will be deployed. To evaluate the SnoopyCon-
cept algorithm, a dataset of a semi-structured information system is needed.
As described in Section 2.1, there are two major types of information systems.
The dataset of a strictly structured information system would be useless as
there is no freedom regarding the used structures in the system and therefore,
is not suitable to verify an algorithm which recommends structure. On the
other side, an information system that does not limit the used structures in
any way is not suitable to verify the recommendations of structures as the
recommendations are designed to homogenize the structures in such a non-
limited information system. Furthermore, to receive significant results, the
dataset must be of sufficient data size. Due to these constraints, it is difficult
to find a suitable dataset which conforms to all described constraints. As to
the best of our knowledge there does not exists any system which corresponds
to the described SnoopyConcept and thus, there is no dataset which conforms
to all described requirements above.
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Dataset

Due to the above described limitations we decided to base our offline evalua-
tion on the DBpedia dataset [14]. It is collaboratively curated, adheres to a
flexible schema maintained by the community and therefore, has similar char-
acteristics to a dataset which would have been created by the SnoopyConcept.
DBpedia contains triple-based facts in the form of subject, property, value
which are extracted from Wikipedia’s infoboxes (cf. Section 2.1.2). Infoboxes
contain manually aggregated information about an article and are represented
in a tabular format on Wikipedia pages. The structure of such infoboxes has
to adhere to predefined infobox templates which are constantly changed and
adapted by the committed Wikipedia community. Despite this manual main-
tenance, these schemata of infoboxes are not completely homogeneous and
feature a noisy collaborative style [179]. For example, synonyms are used for
the same type of property and different templates are used for the same type of
article. This noisy data, which has been grown with the Wikipedia system and
is partly homogenized by the community, can be compared to recommendation
based evolved schemata which would be present in a system which implements
the SnoopyConcept and its algorithms. All these similarities to datasets of a
semi-structured and guided information systems and also the very large size
of the DBpedia dataset confirm the suitability for our experiments.

For the evaluation of this approach, we used DBpedia version 3.9 (released
on September 17, 2013) [14] containing 4.0 million things (Wikipedia articles)
and 70 million triples (infobox statements only) which were extracted from
the English Wikipedia. After our cleaning (e.g., invalid characters) and im-
port procedure, we stored 3,024,427 distinct subjects and 59,058,009 triples
in our database. We randomly chose 261,808 subjects ( 9%) out of 3 million
instances for our test set. Based on the remaining set of 2.7 million instances
(50 million triples), we computed 700 million rule instances (cf. Algorithm 1
in Section 3.4.1). The compacted rule set of 6.5 million distinct rules provided
a basis for all further recommendation computations. All details about the
dataset and number of rules are summarized in Table 6.1.

Experiment Description & Metrics

In this offline evaluation, we simulate the behavior of a “snoopyfied” infor-
mation system based on the underlying DBpedia dataset. To achieve this,
we conducted a leave-one-out test [45] and used the training and test set as
previously described. To simulate the user’s behavior, we performed a re-
construction process which tries to predict previously removed properties of
subjects in the test set as described below.
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Property Count

Subjects 3,024,427
Distinct properties 49,868
Distinct objects 12,888,228
Triples (total) 59,058,009
Triples in test set 5,895,613
Rule instances 701,645,970
Rules (compacted) 6,457,426

Table 6.1: Properties of the DBpedia dataset after clearing and import

Before we start the reconstruction process of a single subject, we randomly
choose three facts (property-value pairs) of the subject and remove all other
properties from the subject. Those removed properties serve as our ground
truth. The state when only three properties of the subject are present simu-
lates the state after the insertion of some basic properties during the insertion
process of a new subject by the user. Thus, our hypothesis is that three proper-
ties are already sufficient to reconstruct a subject. Based on these three initial
properties, the reconstruction process is started by executing the recommen-
dation algorithm as described in Section 3.4. Subsequently, the resulting top-n
recommended properties are analyzed and compared with the set of removed
properties. If there is no matching property in the list of recommendations, the
reconstruction process is stopped. If the recommendation computation returns
at least one suitable property, i.e., is a member of the removed property set,
the first matched property is accepted and thus, removed from the removed
property set and added to the current properties of the subject. This pro-
cess simulates a user who is accepting a recommended and suitable property
and adding it to the subject. In this case, the recommendation was success-
ful and therefore, the reconstruction process is continued by recomputing the
recommendations. With the next recommendation computation iteration the
previously added property is already taken into account as the algorithm takes
as input the updated and extended property set of the subject.

This recommendation and acceptance loop is computed as long as no further
properties are in the removed property set or no matching property is presented
in the top-n recommendations. As subjects may contain the same property
multiple times with different objects, duplicated properties on subjects are re-
moved and considered only once. The procedure of the preprocessing step, i.e.,
generating the initial properties, and the reconstruction phase which consists
of multiple recommendation steps are shown in Algorithm 8.
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Input: set Stest of all subjects in the test set
1 foreach sj ∈ Stest do
2 Prem ← choose random properties (Psj , 3)
3 Pcur ← Psj \ Prem
4 repeat
5 Prec ← top n rec (Pcur, n)
6 pmatch ← ∅
7 foreach pr ∈ Prec do
8 if (pr ∈ Prem) ∧ (pmatch ≡ ∅) then
9 pmatch ← pmatch ∪ pr

10 end

11 end
12 if (pmatch 6= ∅) then
13 Prem ← Prem \ pmatch
14 Pcur ← Pcur ∪ pmatch
15 end

16 until (Prem ≡ ∅) ∨ (pmatch ≡ ∅);

17 end

Algorithm 8: Reconstruction process including preprocessing and re-
construction phase

During the reconstruction process of 261,808 subjects, multiple evaluation
metrics are recorded [112]. ReconstructionTotal denotes to which extent an
subject instance can be reconstructed using Algorithm 8. Reconstruction de-
scribes the percentage of the removed property set which was reconstructed.
After each recommendation computation, the Precision and Recall are calcu-
lated. Precision and Recall are defined as follows:

precision(Prec) =
|Prec ∩ Prem|
|Prec|

recall(Prec) =
|Prec ∩ Prem|
min(|Prem|, n)

where Prem are the previously removed properties and Prec is the set of top-n
recommendations. Due to the fact that the number of removed properties
is constantly decreased and therefore, may be smaller than the number of
computed recommendations (n) the number of matching recommendations is
divided by the smaller value either n or the size of Prem.

Furthermore, the Fβ-measure which combines recall and precision values is
computed. The weight β defines the weight on precision or respectively recall.
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The balanced F-measure F1 is calculated using equal weights on precision and
recall and is defined as follows:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

F1 = 2 · precision · recall
precision+ recall

As an additional measurement, we also calculated the mean reciprocal rank
which is focused on the ranking of recommendations. The rank considers the
position of correct recommendations and therefore, ranks algorithms higher
that have more correct recommendations at the top positions of the list of
recommendations. The rank is defined as follows:

MRR =

|correct|∑
i=1

1

pos(correcti)
with pos(item) = position of item

We conducted our evaluations using the top-n recommendations with n =
5, 10, 15, 20, and 25 on all 261,808 subjects. Due to the choice overload
described in Section 3.3.5, it is not recommended to suggest more than 10
items. Nevertheless, we compute recommendations up to 25 items to examine
the progression of measured metrics. The first recommendation step which
is based on the remaining three properties of every subject is denoted by
step=0. If no step is specified, the value denotes the average of all iteratively
computed top-n recommendation sets regarding the respective measurement.
The significance (p-value) of all results, were determined by using the Wilcoxon
signed-rank test [175].

The described tests were conducted using the rule-based algorithm presented
in Section 3.4.1. Furthermore, several ranking strategies shown in Table 6.2
were evaluated. The main difference of the evaluated ranking algorithms is
the combination of the confidence and context value (cf. Section 3.4.2) which
is present for every recommendation candidate. cconfidence denotes the confi-
dence of the underlying rules which resulted in proposing the respective candi-
date. ccontext represents the number of rules in the respective context (subject)
that pointed to the candidate. The baseline ranking “simple” is based on the
simple count score (ccount score) which adds up the count values of all under-
lying rules.
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The scores used for the ranking are listed in Table 6.2. If two scores are
specified and separated by a comma, the sorting is done sequentially and the
second value is only considered if the first one is equal for two candidates. The
last ranking strategy context confidence norm is based on normalized values
denoted by the values ccontext′ and cconfidence′ and incorporates a weighting
factor α which can be defined in the range between 0 and 1. This factor
indicates the weight of the context score, e.g., a value of 1 would ignore the
confidence score. The value of α used in the respective test run is concatenated
to the ranking strategy name.

Name Ranking based on

simple ccount score
confidence cconfidence
context simple ccontext, ccount score
context confidence ccontext, cconfidence
context confidence normα (ccontext′ · α) · ((1− α) · cconfidence′)

Table 6.2: Ranking algorithms used in the offline evaluation experiments

Experiment Results & Discussion

This section presents the results of the evaluation metrics proposed in the pre-
vious section. Firstly, we present the results of the reconstruction evaluation
of the SnoopyConcept. Secondly, we get a closer look at the ranking strate-
gies by assessing recall, precision and the mean reciprocal rank of all ranking
strategies.
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Figure 6.1: Reconstruction of removed properties / subjects

Firstly, we evaluate the presented algorithms in regards to reconstruction
which is presented in Figure 6.1.
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The ranking strategy “simple” is based on a simple counting value and repre-
sents the baseline in all graphs. The counting is not normalized and therefore,
is mainly based on the popularity of properties. By incorporating the context,
respectively the number of supporting rules, the algorithm “context simple”
is already able to achieve a 7% higher (p < 0.001) reconstruction rate (cf. Fig-
ure 6.1). The algorithm “confidence” is similar to the simple count algorithm
but takes the total amount of global occurrences of the respective property into
account and thus, mitigates very popular rules. Due to this fact, “confidence”
is able to reconstruct 87% of all removed properties when recommending ten
properties. The best performing (p < 0.001) algorithm “context confidence”
with a reconstruction rate of 88% was able to fully reconstruct 163,442 subjects
out of 261,808 processed subjects when recommending ten properties. Over-
all, 253,969 subjects were reconstructed to more than 50%, which amounts to
97% of all subjects. The numbers also show that only three initial properties
inserted by the user are sufficient to guide the user to a common schema by
recommendations.
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Figure 6.2: Histogram of reconstructed subjects top-1

The histograms in Figures 6.2 and 6.3 show the distribution of reconstructed
subjects and the corresponding reconstruction percentage. The y-axis rep-
resents the number of subjects on a log-scale and the x-axis represents the
reconstruction-buckets with a step size of 5%. The difference between the al-
gorithm “simple” and “context confidence” is clearly visible as the distribution
of the algorithm “context confidence” is skewed right and thus, was able to
reconstruct more subjects to a higher degree. Furthermore, the histograms of
“context confidence” show that recommending just one single property (top-
1) decreases the amount of reconstructed properties drastically. For example,
the first bucket with a reconstruction rate of 0 to 4% contains 31,809 subjects
when recommending only one item (top-1) in comparison to 5,013 subjects
when recommending ten items (top-10).
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Figure 6.3: Histogram of reconstructed subjects top-10

Figure 6.4 shows the precision of all conducted evaluation runs. The algorithm
“context confidence” performs significantly better (p < 0.001) than all other
algorithms. Even in a large and collaboratively created dataset, like the used
DBpedia dataset, the algorithm features a precision of over 38% for all per-
formed 2.6 million top-10 recommendation sets in the test run. This means
that at least three out of ten recommendations are appropriate, the remaining
seven can be inappropriate or also adequate but are not used in the respective
Wikipedia infobox. The precision of the first recommendation set (step=0)
as shown in Figure 6.4 is even higher and is above 61% when recommending
ten properties. Thus, there are only four out of ten recommendations that are
not suitable for the user when she already entered three properties. For the
top-1 setting the best precision value at step-0 of 0.87 denotes that the first
recommended property after entering three properties is correct and suitable
with a probability of 87%.
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Figure 6.4: Precision of computed recommendations

The recall curves shown in Figure 6.5 present the average recall over all recom-
mendations during the reconstruction process. Due to the definition of recall
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as presented on page 121, the only possible values for recall for top-1 recom-
mendations are 1 or 0. As long as the single recommended property matches,
the reconstruction for the respective subjects continues. The recall value is
0 if the recommended property does not match and subsequently, the recon-
struction process of the currently processed subject is stopped. Therefore, the
recall value is higher when recommending only one or three properties. Rec-
ommending just one property (top-1) leads to a lower reconstruction rate as
shown in Figure 6.1 but results in a very high recall value as the reconstruction
process consists of many reconstruction steps with a recall value of 1.
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Figure 6.5: Recall of computed recommendations
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Figure 6.6: Mean reciprocal rank of computed recommendations

Figure 6.6 shows the mean reciprocal rank (MRR) for all algorithms. This
measure can be very helpful when analyzing the performance of the ranking
function of a given recommender system. Considering the MRR step-0 when
recommending just one property, the value of 0.87 confirms the high precision
value for top-1 recommendations and shows that more than eight out of ten
top-1 recommendations are accurate and suitable in the respective context of a
subject containing three initial properties. This high top-1 accuracy is crucial
for system-features which are restricted to show only one recommendation.
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For example, the input field in the subject editor can be already prefilled by
a greyed-out placeholder property as shown in Figure 5.1 on page 106. Such
a feature would furthermore reduce the barrier of accepting recommendations
and thus, contributes to a more homogeneous vocabulary of properties.

1 3 5 7 10 15 20 25
top-k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1
@

k

f1, beta=1.0
context_confidence
confidence
context_simple
simple

1 3 5 7 10 15 20 25
top-k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1
@

k

f1, beta=1.0, step=0
context_confidence
confidence
context_simple
simple

Figure 6.7: F1-measure of computed recommendations
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Figure 6.8: Reconstruction and recall of “context confidence normα”

In general, it can be seen that the curves are flattening with an increasing top-
k value. This behaviour is strongly visible in the MRR graph in Figure 6.6
which shows a very flat curve with top-k values greater than 10. This be-
haviour is also confirmed by the sloping curve shown in the F1-measure graph
in Figure 6.7. Especially when considering a good user experience and the
prevention of choice overload by too many recommendations (cf. Section 3.3.5
and [115, 25]), this property is crucial and proves that a limited amount of
recommendations of seven to ten items is sufficient to guide the user to a
common schema.

In Figure 6.8, the reconstruction and recall of the normalized version of the
context-sensitive algorithm presented in Section 3.4.3 are shown. The attached
number in the name of the ranking algorithm indicates the weight α of the
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normalized ccontext. For example, “context confidence norm0.9” defines that
ccontext is incorporated in the final score by 90% and cconfidence by 10%. It can
be seen that a decreasing impact of the context results in a lower reconstruction
and recall. As shown in Table 6.3, “context confidence norm0.9” and “con-
text confidence” are both able to reach the best recall value of 0.74. All other
weights result in lower recall and recall values. Those results show that the
computationally more complex ranking strategy “context confidence norm”
which require 50% more time to compute recommendations (cf. Section 4.4) is
not able to perform significantly better than “context confidence”. Therefore,
we conclude that the weighting and normalization overhead can be omitted
without trading in quality of recommendations. Thus, the algorithm “con-
text confidence” performs the best in terms of performance and accuracy.

Algorithm Recall Precision MRR ReconstTotal

simple 0.5121 0.2865 1.1720 0.7423
context simple 0.5550 0.3034 1.2288 0.7965
confidence 0.7325 0.3852 1.5735 0.9084
context confidence 0.7456 0.3894 1.5858 0.9176
context confidence norm0.1 0.7365 0.3865 1.5773 0.9108
context confidence norm0.3 0.7411 0.3880 1.5818 0.9137
context confidence norm0.5 0.7437 0.3889 1.5844 0.9157
context confidence norm0.7 0.7450 0.3893 1.5855 0.9168
context confidence norm0.9 0.7456 0.3894 1.5858 0.9175

Table 6.3: Metrics for all presented algorithms, top-10

To conclude the evaluation of all proposed recommendation algorithms, Ta-
ble 6.3 lists all measured performance values in terms of recall, precision, mean
reciprocal rank (MRR) and reconstruction for recommending ten properties.
As can be seen, the best results are obtained by the “context confidence”
approach across all measures.

Summary & Limitations

The presented experiments evaluate the automatic recommendation of struc-
ture without any user interaction. However, the Snoopy concept provides
additional recommendations while the user is typing. Consider a user who
specifies the first character of a property, e.g. ”A”. This information can cut
down the number of suitable recommendations dramatically. Furthermore, by
using a thesaurus, synonyms can be matched and a more commonly used syn-
onym can be recommended to the user. Consider a user who enters citizens as
a property. The system recommends the usage of population and by accepting
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this recommendation, the user contributes to a more homogeneous schema.
All these user input-based recommendations heavily increase the recall and
precision values but cannot be tested within the presented test scenario, as
real interaction of a human user is required.

Furthermore, the presented offline evaluation is based on a collaboratively
created dataset which is used as a ground truth dataset and thus, defines if a
recommendation is valid and correct. We argue that such an evaluation can
only serve as a baseline evaluation measure due to the restriction that only
properties that have already been used on the given data item, may resolve to
true positives and hence, influence the evaluation result. Therefore, we assume
that the recommendation algorithm performs even better than we can prove
by using this offline based approach.

The performed evaluations reveal that both scores ccontext and cconfidence are
relevant and have to be incorporated in a ranking to achieve significantly
better results in terms of recall, precision, MRR and reconstruction. The
scores can be sequentially combined and do not need any normalization or
weighted combination. We also showed that the recommendation of seven to
ten properties is sufficient and leads to reconstruction rates of up to 91% while
having a precision of 39%.

6.1.2 Wikidata Property Suggestor Evaluation

The SnoopyConcept algorithm was also evaluated in the context of Wikidata
and its property suggestor as described in Section 5.4. In contrast to the
SnoopyConcept, the Wikidata property suggestor heavily relies on the defined
class of a subject. This additional information is very beneficial for a recom-
mender system as it allows to recommend properties which are defined for the
respective class. The SnoopyConcept was designed to compute recommenda-
tion without any manually created information about the type or class. This
advantage provides the possibility to also compute accurate recommendations
for very specific domains as e.g., moons of Pluto (cf. Section 3.1).

In this section, we present the results of the comparison between the Snoopy-
Concept, the Wikidata Property Suggestor and a new hybrid approach which
is described in Section 5.4. For the evaluation, we employed a leave-one-out
test as described in Section 6.1.1 to evaluate their ability to provide suitable
recommendations and reconstruct the properties of a given subject.
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Dataset & Experiment Description

For the evaluation, we used a Wikidata dump1, using the version of 2015-
10-26. For the test set, we randomly selected 10,000 different subjects with
a minimal requirement of four properties. This requirement is fulfilled by
9,254 data items that subsequently form the test set underlying the evaluation.
Figure 6.9 shows the distribution of the number of properties on each item for
the test set. For each of these subjects within the test set, we randomly
select three properties and remove all but these three properties from the
data item. We store these removed properties as these form the ground truth
data for the evaluation. The resulting reduced subject serves as the first
input for the recommender systems. Subsequently, the evaluation process
as described in the previous Section 6.1.1 attempts to reconstruct a subject.
As for the measures for evaluating the reconstruction process we rely on the
traditional information retrieval measures recall, precision and F-measure, the
mean reciprocal rank (MRR) [112] and the reconstruction-measure. All metric
definitions and an according description can be found in Section 6.1.1.

Experiment Results & Discussion

This section presents the results of the evaluation methods proposed in the
previous section in the context of Wikidata. Firstly, we present the results
of the evaluation of the individual recommendation approaches in regards to
recall and precision. Secondly, we get a closer look at the mean reciprocal

1https://www.wikidata.org/wiki/Wikidata:Database_download, accessed 2017-07-17

130

https://www.wikidata.org/wiki/Wikidata:Database_download


6.1 Recommendation Algorithms

1 3 5 7 10
top-k

0.55

0.60

0.65

0.70

0.75

0.80

0.85
re

ca
ll@

k

WD_context

WD
AN_context

AN
SN_context_classified

SN_classified

SN_context

SN

(a) Recall@k

1 3 5 7 10
top-k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

ci
si

o
n
@

k

WD_context

WD
AN_context

AN
SN_context_classified

SN_classified

SN_context

SN

(b) Precision@k

Figure 6.10: Evaluation measures@k of all evaluated algorithms

rank and in a third step, we look at the reconstructive power of the individual
algorithms.

Firstly, we evaluate the presented recommender algorithms in regards to re-
call and precision. Figure 6.10a shows a plot of the recall@k-measure for
the presented recommenders. I.e., we evaluate the recall-measure for one,
three, five, seven and ten provided recommendations and depict the different
results. We observe that in terms of recall, the Wikidata recommendation
approach enhanced with contextual information (WD context as presented in
Section 5.4) performs best, achieving a recall@1 of 76.29% and a recall@10
of 83.64%. The evaluations shows that this approach performs best across
all numbers of recommendations given (significantly better than all other ap-
proaches; p < 0.001). The second best approach is the AN approach, followed
by SN context. We can also observe that the SN approach performs last,
however, can be significantly improved by utilizing contextual information
(p < 0.001).

Figure 6.10b shows the precision@k-results for the evaluated algorithms.
Again, WD context performs best, reaching a precision of 76.29%@1 and a
precision of 21.55%@10, again closely followed by the AN approach. We de-
tect significant differences in the performance of these two (p < 0.001) and
can observe that the algorithms perform rather similar, again with SN being
the worst performing algorithm. The evaluations show that using contex-
tual information for ranking improves each of the proposed approaches sig-
nificantly. We verify this finding by comparing the results of the individual
algorithms once without using context for ranking and once with added con-
text information for the ranking computation. This evaluation shows that for
all of the approaches, recall as well as precision for all recommendation list
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Figure 6.11: Evaluation Measures

sizes is significantly increased when introducing context to the ranking pro-
cess (p < 0.001). As for the contribution of classifying properties, we observe
similar results. Adding special rules for classifying properties to the set of
association rules significantly increases recall as well as precision of all of the
approaches (p < 0.001).

Figure 6.11a shows the mean reciprocal rank for all algorithms. This measure
can be very helpful when analyzing the performance of the ranking function
of a given recommender system. Generally, we observe that the findings in
this evaluation are in line with the previous results. I.e., the best perform-
ing algorithms in terms of recall and precision also perform well in terms of
ranking.

The results of the evaluation of the reconstructive power of the evaluated
property recommendation algorithms can be seen in Figure 6.11b. Again, the
results correlate with the previous findings and show the best performance
for the WD context approach, significantly better than the WD approach
(p < 0.001).

To conclude the evaluation of the individual recommender algorithms, we pro-
vide a detailed comparison of the best algorithm of all three proposed ap-
proaches in Table 6.4. On the Wikidata platform, the default number of
recommendations provided to a user entering new information, is 7. There-
fore, we list the performance@7 in Table 6.4 where we measure performance in
terms of recall, precision, the F1-measure, the mean reciprocal rank (MRR) as
well as the reconstruction value. As can be seen, the best results are obtained
by the WD context approach across all measures.
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Algorithm Prec. Recall F1 MRR ReconstTotal

WD context 0.2849 0.8152 0.4223 1.17 0.9042

WD 0.2797 0.7971 0.4141 1.16 0.8887

AN context 0.2678 0.7644 0.3966 1.10 0.8667

AN 0.2620 0.7469 0.3879 1.09 0.8498

SN context classified 0.2589 0.7451 0.3843 1.08 0.8529

SN classified 0.2460 0.7071 0.3650 1.04 0.8143

SN context 0.2352 0.6854 0.3502 0.99 0.8060

SN 0.1859 0.5742 0.2809 0.86 0.7239

Table 6.4: Detailed Evaluation of all Algorithms@7

The performed evaluations reveal two important influence factors when it
comes to recommending properties to users who currently enter information
on the Wikidata platform: context (cf. Section 3.4.3) and classified prop-
erties. The evaluations show that incorporating these two aspects into the
recommendation process can significantly enhance and improve the resulting
recommendations. I.e., using classifying properties to gain further informa-
tion about the type of the given data item is an important factor. Similarly,
considering the context of a property, and hence, the number of distinct rules
leading to its recommendation, for ranking, further adds to high-quality rec-
ommendations.

One limitation of the classifying approach we observe lies in its reduced flex-
ibility and hence, its generalizability. We argue that information about the
type or superclass of a data item may not always be available, especially when
applying these concepts in a broader context. The manual choice of classi-
fying properties seems rather inflexible and is not necessarily generalizable.
Therefore, we argue that by setting up a more rigid recommender system by
manually specifying classifying properties we trade in flexibility for (slightly)
improved results. The evaluations show that e.g., in terms of recall@7, the
difference between the WD context and WD approaches is 1.81%. On the
contrary, especially considering the fact that a majority of data items feature
only a low number of properties (on average, 4.13 for the dataset underlying
our evaluations), any recommender system has to face the cold-start-problem
(cf. Section 3.6).

We showed that it is beneficial to incorporate contextual information (as pro-
posed by the Snoopy approach) into the recommendation process of the Wiki-
data property suggestor. The evaluations show that not only considering the
sum of confidences of the applicable rules, but also the number of rules leading
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to a given recommendation candidate leads to significantly better results in
terms of recall, precision, MRR and reconstruction.

6.1.3 Online Evaluation/User Experiment

The main goal of the SnoopyConcept is to incorporate the user and encourage
the user to interact with the system. The evaluation of such an interactive
information system cannot be conducted artificially as the interaction of users
with the system cannot be simulated. Therefore, we chose to conduct a user-
centric experiment based on the SnoopyDB prototype which was focused on
the user-interaction regarding the acceptance of recommendations and the pro-
vided support in general [61, 60]. The goal of the evaluation was to assess the
user’s acceptance of the recommendation and guidance mechanisms provided
by the system.

In total, 24 test users took part in the experiment. These users were recruited
from different backgrounds, 2/3 of all test users were computer scientists and
1/3 of the participating users were standard computer users without any spe-
cial computer knowledge or experiences with handling semi-structured data.

For the evaluation, the test users were presented with two different systems:
one system was supporting the users with all recommendation and guidance
features described in the previous sections (in the following referenced as sys-
tem A). The other system was not supporting the users at all and thus, was
not providing any recommendations for neither properties nor value entries
(in the following referenced as system B). System A was bootstrapped with
data created within the previous evaluation of the system [61] which contained
subjects originating from two domains (cities and musicians) in order to be
able to provide basic recommendations and to be able to assess how the system
and the provided recommendations adapt if subjects stemming from a new,
unknown domain are added.

In the course of the experiment, users were asked to fulfill the following tasks
in order:

1. Insert data about an arbitrary university firstly into system B (no sup-
port provided to the user)

2. Insert data about an arbitrary subject related to the motor vehicle in-
dustry into system B
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3. Insert data about an arbitrary university into system A (guidance by
recommendations)

4. Insert data about an arbitrary subject related to the motor vehicle in-
dustry into system A

The subjects the users had to enter were not specified, as well as the actual
information the users had to enter about a certain subject. This information
was solely chosen by the test users themselves. Also, no minimum number
of property-value pairs was specified and hence, the amount of information
about a certain subject that was added was solely decided by the user. The
only restriction was that users were only allowed to use the English language
for the names of the properties. Furthermore, users were not allowed to use the
English Wikipedia for seeking information as already aligned infobox proper-
ties could possibly influence the German-speaking test users and the resulting
property names. During the experiments, all actions the participating test
users were logged and stored in order to be able to evaluate the differences in
the performance of the two systems in regards to the homogeneity of the re-
sulting vocabulary and the acceptance of the provided recommendations. The
results of the analysis of the information gathered during the user experiments
are discussed in the following.

As for the acceptance of the proposed recommendations, the evaluations
showed that 22% of all recommended properties were accepted by the users.
This seemingly low number can be led back to the fact that the system al-
ways proposes five additional properties. Each time a user accepts a recom-
mendation or adds new information, the recommendation list is recomputed.
Hence, the total number of recommended properties is high during each edit-
session. In total, 49% of all newly added property-value pairs were added
by accepting a property recommendation. In 62% of all user edit sessions
(including re-editing of subjects), at least one property recommendation was
accepted. Furthermore, also the auto-completion feature provided as an addi-
tional guidance and support mechanism, was used frequently. 23% of all prop-
erties and 17% of all values were entered by accepting the entries proposed by
the auto-completion mechanisms. A spellchecker was also implemented in the
SnoopyDB prototype. The corrections proposed by the spellchecker were ac-
cepted by the participating test users in 37% of all cases. This acceptance rate
is low, which can be led back to the fact that the spellchecker web service is
based on information extracted from the web corpus. Hence, the spellchecker
was not only suggesting corrections for simple typos but also suggested e.g.
‘Formula 1’ instead of ‘Formula1’ or ‘Leopold II’ instead of ‘Leopold I’ which
were not accepted by the users. Considering only simple typos (e.g. one
missing character), applicable spellchecker recommendations were accepted in
100% of all cases.
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The recommendation of semantic refinements in such a user experiment is
limited as only present subjects can be linked. Nevertheless, users classified
52 values in SnoopyDB (system A) as links (external or internal) and created
nine internal semantic links. Thus, nine values were semantically enhanced by
semantic links pointing to the correct subject.
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Figure 6.12: Number of distinct properties in system A/B

Figure 6.12 shows that the schema entered into the recommendation-providing
system A was 33% more homogeneous in regards to the set of properties en-
tered than without supporting the user (system B). Homogeneity within a set
of properties describes how many synonymous terms were used for the descrip-
tion of the same subject, i.e. how many property names were directly reused
and hence, no synonym was used instead. In this evaluation the resulting prop-
erty vocabulary in system A is 33% smaller than the vocabulary of system B.
Furthermore, object recommendations in system A encouraged the user to re-
usage values. 18% of all values used in system A, were created by accepting
already present recommended values. In system A without recommendations,
only 6.8% of all values were reused. For example, in system B no single value
for the property “genre” was reused, while in system B “pop” was reused ten
times and “rock” was reused seven times. Despite the reduction of properties
and values, the users entered 31% more information into the system A when
supported by recommendations as shown in Figure 6.13. This implies that by
guiding the user during the insertion process and furthermore, enabling the
user to easily add more information and also to point the user to bits of in-
formation which she still might want to enter, the total amount of useful and
structured information can be increased. This value is biased by the fact that
the users already dealt with subjects in the first two tasks of the evaluation
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(system B). However, as we wanted to simulate guidance and motivation of
domain expert users, who already have extensive knowledge about the sub-
ject, such a high percentage can also be possible in real-world environments.
Another important finding of the evaluations was that the introduction of the
new domains did not result in a dramatic increase of newly added properties.
This fact implies that most of the properties were reused.

Summarized, we showed by this user-centric experiment that recommendations
of the SnoopyConcept are accepted and lead to an increase of quality and
quantity of knowledge in the information system.

6.2 User Modeling Evaluation

The evaluation of the extended SnoopyConcept algorithm which also incor-
porates the user preferences as described in Section 3.5, was based on the
SnoopyTagging prototype [34] which is presented in Section 5.2 and was offi-
cially released as a Flickr App2 in the Flickr App Garden. The conducted user
tests were also published in [34, 63]. In total, 20 voluntary test users (originat-
ing from various backgrounds and having diverging levels of computer skills)
took part in this evaluation. The users were asked to use the SnoopyTagging
prototype to upload and subsequently tag arbitrary photos.

2https://www.flickr.com/services/apps/72157625264834816/, accessed 2017-07-17
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Figure 6.14: Precision/Recall@5 using different γ weight coefficients

Overall, 98% of all tags the users facilitated were structured tags, even though
the insertion of simple tags was still possible. This number is a strong indicator
for the acceptance of the concept of contexts. 350 recommendations (233
contexts, 117 tags) were accepted for the creation of 310 Structured Tags.
Such a high percentage of Structured Tags and accepted recommendations
can be attributed to the user-friendly SnoopyTagging system which allows
users to easily create Structured Tags, and the acceptance of the underlying
recommender system.

During the user experiments, all recommendations, user inputs and accepted
recommendations by the user were logged. Based on this usage data, we
evaluated the performance of the hybrid ranking function. For this purpose,
we simulated all recorded user interactions and performed them again while
varying the γ-values responsible for the weighting of the ranking as shown in
the following definition. Subsequently, we evaluated recall and precision of
the recommendations by using the dataset which was manually created by all
users.

total score = γ · scoreglobal + (1− γ) · scoreuser with γ ∈ [0, 1]

The results respectively recall and precision at five recommendation can be
seen in Figure 6.14. The results show that the basic recommendation algo-
rithm without considering any user preferences (γ = 1) already provides very
good recommendations with a recall value of 74%. By increasing the incorpo-
ration of the user-specific recommendations the recall value can be increased
up to 79% with γ = 0.1. The relatively low recall value of 58% when set-
ting γ = 0 and therefore, only consider user specific recommendations can
be led back to the fact that the algorithm cannot suggest any suitable tags
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for unknown users. This drawback can be easily fixed by taking global recom-
mendations into account as global recommendations are considered if there are
not sufficient data about the respective user. The precision values at five rec-
ommendations also indicate that setting γ ≤ 0.5 which results in a stabilized
precision values around 0.16. The reason for the relatively high precision value
of 18.5% with γ = 0 can be led back to the definition of precision. By consider-
ing just user-specific recommendation it is not always possible to provide five
recommendations due to small tag-vocabularies of new users. Thus, less tags
are recommended which results in an peaking precision value. In Figure 6.15
the precision values for recommending only the top ranked item are shown.
When just recommending the top ranked item, recall and precision behaves
the same which results in the same graph. The impact of the user-specific rec-
ommendations is easily noticeable by an increasing recall and precision value.
The best result of about 0.37 can be achieved by setting γ = 0.2.
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Figure 6.15: Precision@1 using different γ weight coefficients

This strong emphasis on personalized recommendations (γ ≤ 0.5) can be ex-
plained by the users preferences to reuse their own tags but also by the lim-
ited amount of users and the resulting size of the folksonomy in the system.
The global set of recommendations will increase with the amount of users as
there are more appropriate tags to recommend. However, to the best of our
knowledge there is no Web 2.0 platform which advertises Structured Tags and
therefore it is not possible to observe this behaviour in a large community in
a real environment.

As for the homogeneity within the tagging vocabulary resulting from the ex-
periments, a total of 170 distinct Structured Tags were entered, where only 37
different contexts were used. This fact is remarkable considering the circum-
stance that users were allowed to enter photos about an arbitrary topic and
shows the frequent re-usage of contexts by recommendations.
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6.3 Evaluation Summary

In this chapter we presented the results of different evaluations of the Snoopy-
Concept and its algorithms. The offline evaluation which is based on a DBpe-
dia dataset proved that the main recommendation algorithm is able to recom-
mend suitable properties by simulating a user which creates new items. The
usage of the DBpedia set with over 59 million triples furthermore showed that
the algorithm is also able to cope with large large datasets which were cre-
ated using mass-collaboration information systems. The offline reconstruction
evaluation showed that up to 91% of all triples can be reconstructed by the
proposed recommendation algorithm. When recommending ten properties the
algorithm was able to reach a precision value of 39% and a recall value of 74%.
The user experiment in Section 6.1.3 compares a naive system and a system
implementing the SnoopyConcept. We showed that the snoopyfied system is
able to homogenize the structures and reduce the size of the vocabulary by
33% while at the same time encouraging the user to enter more information
which resulted 31% more stored knowledge in the system. Furthermore, we
proved that a recommender system is accepted by the users as 66% of all
created triples were based on recommended and accepted properties by the
users. In Section 6.1.2 we showed that the extension of the Wikidata Property
Suggestor algorithm by the context used in the SnoopyConcept algorithm led
to higher accuracy. Furthermore, we showed that the usage of a manual clas-
sification system, as used in the Wikidata approach, has only a limited impact
on the accuracy of structure recommendations. It improves the reconstruction
rate by 2-4% but adds the requirement to manually classify every subject and
thus, rigidify the system and impede the general application of a recommenda-
tion algorithm. In Section 6.2 we evaluated the personalized recommendation
algorithm of the SnoopyConcept and showed that the incorporation of the
personal preferences of a user can lead to a dramatically increase of accurate
recommendations.
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Conclusion

During the last decades, with the enormous growth of the internet and the
web 2.0 movement, collaboration has been lifted to a new level—online mass-
collaboration. In this thesis, we analyzed how recommender systems can be
facilitated to empower semi-structured knowledge bases to improve the cura-
tion, search and storage of huge amounts of knowledge which is created in
a collaborative fashion. Thus, we identified three main research questions in
Section 1.1 which are tackled by the proposed SnoopyConcept:

How can recommender systems empower collaborative information systems to
become more structured without losing their flexibility?

The main idea of the SnoopyConcept is to incorporate the user already dur-
ing the insertion process to prevent heterogeneous structures. Therefore, we
developed a recommender system (cf. Section 3.3) which guides the user dur-
ing the insertion process to align the knowledge to a common homogeneous
schema. The recommender system is solely based on already inserted knowl-
edge and therefore, adapts itself to new domains or structures inserted by
users. We showed in Section 6.1.1 that the SnoopyConcept can be applied to
a mass-collaboratively curated dataset and provide suitable recommendations
to increase the homogeneity. This evaluation exposed that 40% of all recom-
mendations were accurate and the SnoopyConcept reached a recall of up to
90%. The conducted online evaluation described in Section 6.1.3 revealed that
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the SnoopyConcept recommendations were able to create a more homogeneous
schema by reducing the size of the vocabulary used in the information system
by 33%. Nevertheless, the user is not forced to a schema and was able to insert
new domains and structured when needed.

How can direct user communication during the insertion process be facilitated
by recommender systems to increase the quality of information?

The user who inserts new knowledge to an information system is usually a do-
main expert. Therefore, it is very import to use the opportunity of direct com-
munication with the user already during the insertion process to exploit her
expertise. Especially semantic uncertainties and type conflicts can be resolved
at an early stage. The recommendation approach proposed in Section 3.3 aims
at enriching entries by semantic information. We showed in our user-centric
experiment presented in Section 6.1.3 that semantic enhancement recommen-
dations are accepted and lead to more semantic meaningful information in the
system, such as semantic links. Our online evaluation in Section 6.2 showed
that 350 recommendations were accepted for the creation of 310 tags. In the
user-centric experiment described in Section 6.1.3 49% of all newly added
property-value pairs were added by accepting a recommendation. Those num-
bers are strong indicators for the acceptance of the recommender system and
the possibility to influence or guide the user to insert more homogeneous and
semantically enhanced information.

How can automated user guidance by a recommendation system result in an
increased quantity of information?

By recommending suitable properties, the user is guided to re-use already
present properties in the information system. As the user is a domain expert,
this approach can also encourage the user to insert more information. In our
online evaluation (cf. Section 6.1.3) we showed that this approach of pointing
to missing pieces of information, encouraged the users to enter 31% more
information.

In general, we developed the universal SnoopyConcept to compute accurate
recommendations without limiting the fields of application.

The concept is not bound to an underlying technology which was shown by
implementing the approach and its algorithms using three different data stor-
age technologies and models (cf. Chapter 5). The best performing model was
the relational model which was able to compute suitable recommendations in
3ms using the mass-collaboratively created DBPedia dataset. This fulfills the
performance requirements of an online real-time recommender systems which
is also crucial for the acceptance of a recommender system.
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Furthermore, the general applicability of the SnoopyConcept was demon-
strated by applying the approach to different domains (cf. Chapter 4), such
as image tagging and personal information management systems. In those
domains the recommendation approach was furthermore personalized to opti-
mize the recommendations (cf. Section 3.5). In the evaluation of the person-
alized recommender algorithm in Section 6.2 we showed that the recall can be
increased from 74% to 79% by incorporating the user specific behaviour.

Moreover, the property suggestor by Wikidata which conforms to the Snoopy-
Concept, was introduced 2014 and was discussed in Section 5.4. It proves
that the SnoopyConcept approach of guiding the user during the insertion of
knowledge which we already introduced in 2010 [61] has emerged to main-
stream within the past years and emphasizes the usefulness of the approach.
In Section 5.4.2 we proposed an extension of the property suggestor by in-
corporating the SnoopyConcept context (cf. Section 3.4.3). Our conducted
evaluation in Section 6.1.2 proved that the context is able to furthermore
improve the accuracy of the system.

In conclusion, we showed in this thesis that the SnoopyConcept is able to in-
creasing the quantity and quality of knowledge in semi-structured information
systems by leveraging recommender systems to incorporate and guide the user
already during the insertion process.
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[56] D. C. Faye, O. Curé, and G. Blin. A survey of RDF storage approaches.
Revue Africaine de la Recherche en Informatique et Mathématiques
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