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Abstract: The task of intrinsic plagiarism detection is to find plagiarized sections
within text documents without using a reference corpus. In this paper, the intrinsic
detection approach Plag-Inn is presented which is based on the assumption that authors
use a recognizable and distinguishable grammar to construct sentences. The main
idea is to analyze the grammar of text documents and to find irregularities within the
syntax of sentences, regardless of the usage of concrete words. If suspicious sentences
are found by computing the pq-gram distance of grammar trees and by utilizing a
Gaussian normal distribution, the algorithm tries to select and combine those sentences
into potentially plagiarized sections. The parameters and thresholds needed by the
algorithm are optimized by using genetic algorithms. Finally, the approach is evaluated
against a large test corpus consisting of English documents, showing promising results.

1 Introduction

1.1 Plagiarism Detection

Today more and more text documents are made publicly available through large text col-
lections or literary databases. As recent events show, the detection of plagiarism in such
systems becomes considerably more important as it is very easy for a plagiarist to find an
appropriate text fragment that can be copied, where on the other side it becomes increas-
ingly harder to correctly identify plagiarized sections due to the huge amount of possible
sources. In this paper we present the Plag-Inn algorithm, a novel approach to detect pla-
giarism in text documents that circumvents large data comparisons by performing intrinsic
data anaylsis.

The two main approaches for identifying plagiarism in text documents are known as exter-
nal and intrinsic algorithms [PEBC+11], where external algorithms compare a suspicious
document against a given, unrestricted set of source documents like the world wide web,
and intrinsic methods inspect the suspicious document only. Often applied techniques



used in external approaches include n-grams [OLRV10] or word-n-grams [Bal09] com-
parisons, standard IR techniques like common subsequences [Got10] or machine learning
techniques [BSL+04]. On the other side, intrinsic approaches have to comprise the writing
style of an author in some way and use other features like the frequency of words from pre-
defined word-classes [OLRV11], complexity analysis [SM09] or n-grams [Sta09, KLD11]
as well to find plagiarized sections.

Although the majority of external algorithms perform significantly better than intrinsic
algorithms by using the advantage of a huge data set gained from the Internet, intrinsic
methods are useful when such a data set is not available. For example, in scientific docu-
ments that use information mainly from books which are not digitally available, a proof of
authenticity is nearly impossible for a computer system to make. Moreover, authors may
modify the source text in such a way that even advanced, fault-tolerant text comparison
algorithms like the longest common subsequence [BHR00] cannot detect similarities. In
addition, intrinsic approaches can be used as a preceding technique to help reduce the set
of source documents for CPU- and/or memory-intensive external procedures.

In this paper the intrinsic plagiarism detection approach Plag-Inn (standing for Plagiarism
Detection Innsbruck) is described, which tries to find plagiarized paragraphs by analyzing
the grammar of authors. The main assumption is that authors have a certain style in terms
of the grammar used, and that plagiarized sections can be found by detecting irregularities
in their style. Therefore each sentence of a text document is parsed by its syntax, which
results in a set of grammar trees. These trees are then compared against each other, and by
using a Gaussian normal distribution function, sentences that differ significantly according
to its building syntax are marked as suspicious.

The rest of this paper is organized as follows: the subsequent paragraph explains and sum-
marizes the intrinsic plagiarism detection algorithm Plag-Inn, whereby Section 2 describes
in detail how suspicious sentences are selected. The optimization of the parameters used
in the algorithm is shown in Section 3 and an extensive evaluation of the approach is de-
picted in Section 4. Finally, Sections 5 and 6 discuss related work and conclude with the
Plag-Inn algorithm by summarizing the results and showing future work, respectively.

1.2 The Plag-Inn Algorithm

The Plag-Inn algorithm is a novel approach (the main idea and a preliminary evaluation
has been sketched in [TS12]) in the field of intrinsic plagiarism detection systems which
tries to find differences in a document based on the stylistic changes of text segments.
Based on the assumption that different authors use different grammar rules to build their
sentences it compares the grammar of each sentence and tries to expose suspicious ones.
For example, the sentence1

(1) The strongest rain ever recorded in India shut down the financial hub of Mumbai,
officials said today.

1example taken and modified from the Stanford Parser website [Sta12]



could also be formulated as

(2) Today, officials said that the strongest Indian rain which was ever recorded forced
Mumbai’s financial hub to shut down.

which is semantically equivalent but differs significantly according to its syntax. The
grammar trees produced by these two sentences are shown in Figure 1 and Figure 2, re-
spectively. It can be seen that there is a significant difference in the building structure of
each sentence. The main idea of the approach is to quantify those differences and to find
outstanding sentences or paragraphs which are assumed to have a different author and thus
may be plagiarized.
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Figure 1: Grammar Tree Resulting From Sentence (1).
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Figure 2: Grammar Tree Resulting From Sentence (2).

The Plag-Inn algorithm consists of five basic steps:



1. At first the given text document is parsed and split into single sentences by using
Sentence Boundary Detection algorithms [SG00].

2. Then, the grammar is parsed for each sentence, i.e. the syntax of how the sen-
tence was built is extracted. With the use of the open source tool Stanford Parser
[KM03] each word is labelled with Penn Treebank tags [MMS93], that for example
correspond to word-level classifiers like verbs (VB), nouns (NN) or adjectives (JJ),
or phrase-level classifiers like noun phrases (NP) or adverbial phrases (ADVP). Fi-
nally, the parser generates a grammar syntax tree as it can be seen in e.g. Figure
1. Since the actual words in a sentence are irrelevant according to the grammatical
structure, the leaves of each tree (i.e. the words) are dismissed.

3. Now, having all grammar trees of all sentences, the distance between each pair of
trees is calculated and stored into a triangular distance matrix D:
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Thereby, each distance di,j corresponds to the distance of the grammar trees be-
tween sentence i and j, where di,j = dj,i. The distance itself is calculated using
the pq-gram distance [ABG10], which is shown to be a lower bound of the more
costly, fanout weighted tree edit distance [Bil05]. A pq-gram is defined through
the base p and the stem q, which define the number of nodes taken into account
vertically (p) and horizontally (q). Missing nodes, e.g. when there are less than q

horizontal neighbors, are marked with ⇤. For example, using p = 2 and q = 3, valid
pq-grams of the grammar tree shown in Figure 1 would be {S-NP-NP-VP-*} or {S-
VP-VBD-PRT-NP} among many others. The pq-gram distance is finally calculated
by comparing the sets PQi and PQj which correspond to the set of pq-grams of the
grammar trees of the sentences i and j, respectively.

The distance matrix of a document consisting of 1500 sentences is visualized in
Figure 3, whereby the triangular character of the matrix is ignored in this case for
better visibility. The z-axis represents the pq-gram-distance between the sentences
on the x- and y-axis, and it can be seen that there are significant differences in the
style of sentences around number 100 and 800, respectively.

4. Significant differences which are already visible to a human eye in the distance
matrix plot are now examined through statistical methods. To find significantly
outstanding sentences, i.e. sentences that might have been plagiarized, the median
distance for each row in D is calculated. The resulting vector

d̄ = (d̄1, d̄2, d̄3, . . . , d̄n)
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Figure 3: Distance Matrix of a Sample Document Consisting of about 1500 Sentences.

is then fitted to a Gaussian normal distribution which estimates the mean value µ

and the standard deviation �. The two Gaussian values can thereby be interpreted as
a common variation of how the author of the document builds his sentences gram-
matically.

Finally, all sentences that have a higher difference than a predefined threshold �susp

are marked as suspicious. The definement and optimization of �susp (where �susp �
µ + �) is shown in Section 3. Figure 4 depicts the mean distances resulting from
averaging the distances for each sentence in the distance matrix D. After fitting the
data to a Gaussian normal distribution, the resulting mean µ and standard deviation
� are marked in the plot. The threshold �susp that splits ordinary from suspicious
sentences can also be seen, and all sentences exceeding this threshold are marked.

5. The last step of the algorithm is to smooth the results coming from the mean dis-
tances and the Gaussian fit algorithm. At first, suspicious sentences that are close
together with respect to their occurence in the document are grouped into para-
graphs. Secondly, standalone suspicious sentences might be dropped because it is
unlikely in many cases that just one sentence has been plagiarized. Details on how
sentences are selected for the final result are presented in Section 2.

2 Selecting Suspicious Sentences

The result of steps 1-3 of the Plag-Inn algorithm is a vector d̄ of size n which holds the
average distances of each sentence to all other sentences. After fitting this vector to a
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Figure 4: Mean Distances Including the Gaussian-Fit Values µ and �.

Gaussian normal distribution as it is shown in Section 1.1, all sentences having a higher
average distance than the predefined threshold �susp are marked as suspicious. This is the
first step as can be seen in Algorithm 1.

The main objective of the further procedure of the sentence-selection algorithm is to group
together sentences into plagiarized paragraphs and to eliminate standalone suspicious sen-
tences. As the Plag-Inn algorithm is based on the grammatical structure of sentences, short
instances like ”I like tennis.” or ”At what time?” carry too less information and are most
often not marked as suspicious as their building structure is too simple. Nevertheless, such
sentences may be part of a plagiarized section and should therefore be detected. For ex-
ample, if eight sentences in a row have found to be suspicious except one in the middle, it
is intuitively very likely that it should be marked as suspicious as well.

To group together sentences, the algorithm shown in Algorithm 1 traverses all sentences
in sequential order. If it finds a sentence that is marked suspicious, it first creates a new
plagiarized section and adds this sentence. As long as ongoing suspicious sentences are
found they are added to the section. When a sentence is not suspicious, the global idea
is to use a lookahead variable (curLookahead) to step over non-suspicious sentences and
check if there is a suspicious sentence nearby. If a sentence is then found to be suspicious
within a predefined maximum (maxLookahead), this sentence and all non-suspicious
sentences in between are added to the plagiarized section, and the lookahead variable is
reset. Otherwise if this maximum is exceeded and no suspicious sentences are found, the
current section is closed and added to the final result.



After all sentences are traversed, plagiarized sections in the final set R that contain only
one sentence are checked to be filtered out. Intuitively this step makes sense as it can
be assumed that authors do not copy only one sentence in a large paragraph. Within the
evaluation of the algorithm described in Section 4 it could additionally be observed that
single-sentence sections of plagiarism are often the result of wrongly parsed sentences
coming from noisy data. To ensure that these sentences are filtered out, but strongly pla-
giarized single sentences remain in the result set, another threshold is introduced. In this
sense, �single defines the average distance threshold that has to be exceeded by sections
that contain only one sentence in order to remain in the result set R.

As the optimization of parameters (Section 3) showed, the best results can be achieved
when choosing �single > �susp, which strengthens the intuitive assumption that a single-
sentence section has to be really different. Controversially, genetic algorithms described
in Section 3.2 also generated parameter optimization results that recommend to not filter
single-sentence sections at all.

An example on how the algorithm works can be seen in Figure 5. Diagram (a) shows all
sentences, where all instances with a higher mean distance than �susp have been marked
as suspicious previously. When reaching suspicious sentence 5, it is added to a newly
created section S. After adding sentence 6 to S, the lookahead variable is incremented
as sentence 7 is not suspicious. Reaching sentence 8 which is suspicious again, both
sentences are added to S as can be seen in Diagram (b). This procedure continues until the
maximum lookahead is reached, which can be seen in Diagram (c). As the last sentence is
not suspicious, S is closed and added to the result set R. Finally, Diagram (d) shows the
final result set after eliminating single-sentence sections. As can be seen, sentence 14 has
been filtered out as its mean difference is less than �single, whereas sentence 20 remains
in the final result R.

3 Parameter Optimization

To evaluate and optimize the Plag-Inn algorithm including the sentence-selection algo-
rithm, the PAN 2011 test corpus [PSBCR10] has been used which contains over 4000
English documents. The documents consist of a various number of sentences, starting
from short texts from e.g. 50 sentences up to novel-length documents of about 7000 sen-
tences. About 50% of the documents contain plagiarism, varying the amount of plagiarized
sections per document, while the other 50% are left originally and contain no plagiarized
paragraphs.

Most of the plagiarism cases are built by copying text fragments from other documents and
subsequently inserting them in the suspicious document, while manual obfuscation of the
inserted text is done additionally in some cases. Also, some plagiarism cases have been
built using copying and translating from other source-languages like Spanish or German.
Finally, for every document there exists a corresponding annotation file which can be
consulted for an extensive evaluation.

As depicted in the previous section the sentence-selection algorithm relies on various input



Algorithm 1 Sentence Selection Algorithm
input:

di mean distance of sentence i
�susp suspicious sentence threshold
�single single suspicious sentence threshold
maxLookahead maximum lookahead for combining non-suspicious sentences
filterSingles indicates whether sections containing only one sentence should be filtered out

variables:
suspi indicates whether sentence i is suspicious or not
R final set of suspicious sections
S set of sentences belonging to a suspicious section
T temporary set of sentences
curLookahead used lookaheads

1: set suspi  false for all i, R ;, S  ;, T  ;, curLookahead 0
2: for i from 1 to n do
3: if di > �susp then suspi  true

4: end for

5: for i from 1 to number of sentences do . traverse sentences
6: if suspi = true then
7: if T 6= ; then
8: S  S [ T . add all non-suspicious sentences in between
9: T  ;

10: end if
11: S  S [ {i}, curLookahead 0
12: else if S 6= ; then
13: curLookahead curLookahead+ 1
14: if curLookahead  maxLookahead then
15: T  T [ {i} . add non-suspicious sentence i to temporary set T
16: else
17: R R [ {S} . finish section S and add it to the final set R
18: S  ;, T  ;
19: end if
20: end if
21: end for
22: if filterSingles = true then . filter single-sentence sections
23: for all plagiarized sections S of R do
24: if |S| = 1 then
25: i the (only) element of S
26: if di < �single then R R \ {S}
27: end if
28: end for
29: end if
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Figure 5: Example of the sentence-selection algorithm.

variables:

• �

0
susp: suspicious sentence threshold. Every sentence that has a higher mean dis-

tance is marked as suspicious.

• �

0
single: single suspicious sentence threshold. Every sentence in a single-sentence

plagiarized section that is below this threshold is unmarked in the final step of the
algorithm.

• maxLookahead: maximum lookahead. Defines the maximum value of checking
if there is a suspicious sentence occuring after non-suspicious sentences that can be
included into the current plagiarized section.

• filterSingles: boolean switch that indicates whether sections containing only one
sentence should be filtered out. If filterSingles = true, the single suspicious





sentence threshold �single is used to determine whether a section should be dropped
or not.

Thereby, the values for the thresholds �0susp and �

0
single, respectively, represent the inverse

probability range of the Gaussian curve that include sentences with a mean distance that is
not marked as suspicious. For example, �0susp = 0.9973 would imply that �susp = µ+3�,
meaning that all sentences having a higher average distance than µ + 3� are marked as
suspicious. In other words, one would find 99.73% of the values of the Gaussian normal
distribution within a range of µ ± 3�. In Figure 4, �susp resides between µ + 2� and
µ+ 3�.

In the following the optimization techniques are described which should help finding the
parameter configuration that produces the best result. To achieve this, predefined static
configurations have been tested as well as genetic algorithms have been used. Additionally,
the latter have been applied to find optimal configurations on two distinct document subsets
that have been splitted by the number of sentences (see Section 3.3).

All configurations have been evaluated using the common IR-measures recall, precision
and the resulting harmonic mean F-measure. In this case recall represents the percentage
of plagiarized sections found, and precision the percentage of correct matches, respec-
tively. In order to compare this approach to others, the algorithm defined by the PAN
workshop [PSBCR10] has been used to calculate the according values2.

3.1 Static Configurations

As a first attempt, 450 predefined static configurations have been created by building all3
permutations of the values in Table 1.

Parameter Range
�

0
susp [0.994, 0.995, . . . , 0.999]
�

0
single [0.9980, 0.9985, . . . , 0.9995]
maxLookahead [2, 3, . . . , 16]
filterSingles [yes, no]

Table 1: Configuration Ranges for Static Parameter Optimization.

The five best evaluation results using the static configurations are shown in Table 2. It can
be seen that all of the configurations make use of the single-sentence filtering, using almost
the same threshold of �0single = 0.9995. Surprisingly, the maximum lookahead with values

2Note that the PAN algorithms of calculating recall and precision, respectively, are based on plagiarized
sections rather than plagiarized characters, meaning that if an algorithm detects 100% of a long section but fails
to detect a second short section, the F-measure can never exceed 50%. Calculating the F-measure character-based
throughout the Plag-Inn evaluation resulted in an increase of about 5% in all cases.

3In configurations where single-sentence sections are not filtered, i.e. filterSingles = no, permutations
originating from the values of �0single have been ignored.



from 13 to 16 are quite high. Transformed to the problem definition and the sentence-
selection algorithm, this means that the best results are achieved when sentences can be
grouped together in a plagiarized section while stepping over up to 16 non-suspicious
sentences.

As it is shown in the following section, genetic algorithms produced a better parameter
configuration using a much lower maximum lookahead.

�susp maxLookahead filterSingles �single Recall Precision F-Measure
0.995 16 yes 0.9995 0.159 0.150 0.155
0.994 16 yes 0.9995 0.161 0.148 0.155
0.996 16 yes 0.9995 0.154 0.151 0.153
0.997 15 yes 0.9995 0.150 0.152 0.152
0.995 13 yes 0.9990 0.147 0,147 0.147

Table 2: Best Evaluation Results using Static Configuration Parameters.

3.2 Genetic Algorithms

Since the evaluation of the documents of the PAN corpus is computationally intensive,
a better way than just evaluating fixed static configurations is to use genetic algorithms
[Gol89] to find optimal parameter assignments.

Genetic algorithms emulate biological evolutions, implementing the principle of the ”Sur-
vival of the fittest”4. In this sense genetic algorithms are based on chromosomes which
consist of several genes. A gene can thereby be seen as a parameter, whereas a chro-
mosome represents a set of genes, i.e. the parameter configuration. Basically, a genetic
algorithm consists of the following steps:

1. Create a ground-population of chromosomes of size p.

2. Randomly assign values to the genes of each chromosome.

3. Evaluate the fitness of each chromosome, i.e. evaluate all documents of the corpus
using the parameter configuration resulting from the individual genes of the chro-
mosome.

4. Keep the fittest 50% of the chromosomes and alter their genes, i.e. alter the pa-
rameter assignments so that the population size is p again. Thereby the algorithms
recognize whether a change in any direction lead to a fitter gene and takes it into
account when altering the genes [Gol89].

5. If the predifined number of evolutions e is reached then stop the algorithm, otherwise
repeat from step 3.

4The phrase was originally stated by the British philosopher Herbert Spencer.



With the use of genetic algorithms significantly more parameter configurations could be
evaluated against the test corpus. Using the JGAP-library5, which implements genetic
programming algorithms, the parameters of the sentence-selection algorithm have been
optimized. As the algorithm needs a high amount of computational effort and to avoid
overfitting, random subsets of 1000 to 2000 documents have been used to evaluate each
chromosome, whereby these subsets have been randomized and renewed for each evolu-
tion. As can be seen in Table 3 the results outperform the best static configuration with an
F-measure of about 23%.

What can be seen in addition is that the best configuration gained from using a population
size of p = 400 recommends to not filter out single-sentence plagiarized sections, but to
rather keep them.

p �susp maxLook. filterSingles �single Recall Precision F
400 0.999 4 no - 0.211 0.257 0.232
200 0.999 13 yes 0.99998 0.213 0.209 0.211

Table 3: Parameter Optimization Using Genetic Algorithms.

3.3 Genetic Algorithms On Document Subsets

By a manual inspection of the individual results for each document of the test corpus it
could be seen that in some configurations the algorithm produced very good results on
short documents, while on the other hand it produced poor results on longer, novel-length
documents. Additionally when using other configurations, the F-measure results of longer
documents were significantly better.

To make use of the assumption that different length documents should be treated differ-
ently, the test corpus has been split by the number of sentences in a document. For exam-
ple, when using 150 as splitting number, the subsets S<150 and S�150 have been created,
containing all documents that have less than 150 sentences and containing all documents
that have more than or exactly 150 sentences, respectively. Then, for each of the two sub-
sets, the optimal parameter configuration has been evaluated using genetic algorithms as
it is described in Section 3.2. Like before, a random number of documents from 1000 to
2000 has been used to evaluate a chromosome.

Table 4 shows the best configurations produced by genetic algorithms using the sentence-
split document subsets. For the dividing number 100, 150 and 200 sentences per document
have been choosen as this seemed to be the optimal range found by manual inspection (as
discussed in Section 6 this could be improved in future work).

With an F-measure of about 50% on the short-documents subset and 21% on the long-
documents subset the sentence-split evaluation worked best with a splitting number of 100
and a resulting overall F-measure of 35.7%. All configurations significantly outperform

5http://jgap.sourceforge.net, visited October 2012



the genetic algorithm optimization described earlier, in the best case over 12%. Moreover,
what can be seen in all configurations is that the short-documents subsets could be opti-
mized significantly better, resulting in F-values of about 45% to 50%. As discussed later,
this already indicates that the algorithm is well suited for short documents.

subset �susp maxLook. filterSingles �single Recall Precision F
S�100 0.998 6 yes 0.9887 0.205 0.216 0.210
S<100 0.999 1 no - 0.501 0.508 0.504

0.353 0.362 0.357

S�150 0.963 9 yes 0.9993 0.118 0.109 0.113
S<150 0.999 4 no - 0.494 0.478 0.486

0.306 0.294 0.300

S�200 0.963 10 yes 0.9998 0.108 0.115 0.111
S<200 0.999 2 yes 0.9999 0.441 0.457 0.449

0.275 0.286 0.280

Table 4: Parameter Optimization Using Genetic Algorithms on Document Subsets Splitted by the
Number of Sentences.

4 Evaluation

The Plag-Inn algorithm including the sentence-selection algorithm have been evaluated
using the PAN 2011 test corpus which has been described in more detail in Section 3. It
consists of more than 4000 English documents that randomly contain plagiarism cases.

The following section shows an extensive evaluation of the Plag-Inn approach using the
sentence selection algorithm. All results are based on the optimal configuration gained
from using the genetic algorithms over the whole test corpus as described in Section 3.2.
Although the genetic algorithms optimized for the document subsets split by text length
produced significant better results, it is more realistic to use just one parameter configura-
tion in order to avoid overfitted results (manual inspection showed that small documents
contained significantly less plagiarism cases in the test corpus).

Figure 6 shows the overall evaluation result with an F-measure of 23%6. It can be seen
that plagiarism cases created by translation could be detected better than those created
artificially7. This result is as expected because the grammar of another language is always
different than the target language (English), and translation - which is done by automatic
algorithms in most cases - produces changes in grammar that can be detected more easily.

The fourth column shows the results for documents where at least 75% of the plagiarism
6The currently (2012) best intrinsic plagiarism detector achieves an F-measure of about 33% over the same

test corpus [OLRV11]. As shown, using the best parameter configuration on document subsets we achieve even
35%.

7artificially means that a source fragment has been copied and modified by computer algorithms.
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Figure 6: Overall Evaluation Results.

cases have been built by copying and subsequently doing manual obfuscation by hand. The
F-measure for those cases almost reaches 30%, which indicates that the approach works
very well for real plagiarism cases, i.e. cases that were created by humans rather than by
computer algorithms. Finally, for comparison the results gained from the best parameter
configurations on two document subsets splitted by the number of sentences contained is
shown in the last column. As stated before, the best result of about 35% could be achieved
by using a splitting number of 100.

In all results the precision is higher than the recall, meaning that the approach is better in
interpreting suspicious passages than in finding them.

0"

0,05"

0,1"

0,15"

0,2"

0,25"

0,3"

0,35"

0,4"

recall" precision" F"

pe
rc
en

t' documents"not"containing"
plagiarism"

documents"containing"
plagiarism"

Figure 7: Evaluation Results for Documents Containing and Not Containing Plagiarism Cases.

The Plag-Inn approach achieves significantly different results on documents that contain
plagiarism and on documents that do not contain plagiarism, as it is shown in Figure 7.
Thereby, clean documents are processed very well and with balanced values for recall, pre-
cision and the according F-value of about 35%, respectively. On the other side, documents



containing plagiarized sections are obviously more difficult to detect for the algorithm,
while the precision is consistently higher than the recall as experienced before.

Evaluations show that, the shorter documents get the better the algorithm works. Like
it is illustrated in Figure 8, an F-measure of over 40% could be achieved on documents
containing less than 300 sentences. Moreover as stated before, the algorithm performs
steadily better when documents get shorter, reaching an F-measure of nearly 70% on very
short documents containing less than 50 sentences. As the algorithm uses grammatical
inconsistencies to find plagiarized sections, it might be that the variety of sentence syntaxes
is too high in long documents, such that the algorithm fails frequently and produces the
overall result of only 23%.
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Figure 8: Evaluation Results for Short Documents.

What could be found in addition is that the approach is sensitive to the number of plagia-
rized sections per document as it is shown in Figure 9. Here, all documents that contain
plagiarism have been inspected concerning the concrete number of plagiarism cases per
document. It can be seen that the more sections of a document have been plagiarized, the
better the results get. I.e. the more an author steals in his work, the more likely it is that it
is detected by the algorithm.

Finally, the best option to improve the approach in future work is to reduce the number of
false-positives, which is depicted in Figure 10. Diagram (a) shows the number of false-
positives and false-negatives, respectively, where over 35% of all test corpus documents
have wrongly been marked as plagiarized. On the horizontal axis the number of detected
plagiarized sections for false-positives, and the number of not detected sections for false-
negatives are shown. For about half of the wrongly predicted false-positives, the algorithm
detected less than 5 plagiarism cases, and for about 10% of the documents the algorithm
detected only one plagiarized section. This means that improving the algorithm in a way
such that the false-positives that contain only one suspicious passage could be reduced or
eliminated, this would lead to a significant better overall result.

In diagram (b) the percentage of predictions is shown. According to the high number of
false-positives, the algorithm predicted too much for about half of the documents, i.e. it
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Figure 9: Evaluation Results Correlated to Number of Plagiarized Sections per Document.

detected plagiarized sections where there originally were less or even none. For the other
half, too less or the exact number of sections have been detected. It has to be stressed that
the amount of exact predictions in terms of plagiarized sections does not necessarily cor-
respond to the number of correct detections. For example, the algorithm might have found
four plagiarized sections in a document that contained exactly four plagiarized sections,
but it might be the case that only two of them are correct. Nevertheless, manual inspec-
tions of the results have shown that the majority of exact predictions really correspond to
the correct sections.
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Figure 10: False-Positives, False-Negatives and General Prediction Statistics.

5 Related Work

An often used technique in intrinsic plagiarism detection algorithms are n-grams [Sta09,
KLD11], where a text document is broken into sets of two-, three- or four-letter chunks



and subsequently analyzed by their number of occurences within sliding windows. With
the additional use of a style change function [Sta09] could reach a recall and precision
value of about 33% over the PAN11 test corpus. Another approach also uses the sliding
window technique but is based on word frequencies and the assumption that authors use a
significant set of words [OLRV11].

An approach that tries to recognize paraphrased sections based on the phrase structure
of sentences and the structure of verb phrases is described in [UKN05]. In this work,
sentence-initial and -final phrases are inspected together with predefined semantic classes
of verbs [Lev93] by part-of-speech tagging. It uses POS-tags only, i.e. without referring
to computationally intense full grammar tree parses.

[SM09] discusses the comparison of binary strings calculated from word groups like nouns
or verbs using complexity analysis. Approaches in the field of author detection and genre
categorization also use NLP tools to analyze documents based on syntactic annotations
[SKF00], but do not use grammar trees for comparisons. Word- and text-based statistics
like the average sentence length or the average parse tree depth are used in [Kar00].

6 Conclusion and Future Work

In this paper the intrinisic plagiarism detection approach Plag-Inn is described: it aims to
find plagiarism in text documents by inspecting the suspicious document only. The main
idea is to analyze grammatical structures that authors use to build sentences, and to find
inconsistencies in the syntax. After inconsistencies have been found by using Gaussian
normal distribution fitting, an algorithm that selects and combines suspicious sentences is
presented.

Furthermore, various parameters of the algorithm have been optimized by using static
configurations and genetic algorithms. Using the best parameter setting, the algorithm
achieves an F-measure of about 23%. By additionally using different settings for short and
long documents, an overall F-measure of about 35% could be achieved, which is a rather
high value for intrinsic plagiarism detection systems. In addition, an F-score of over 50%
could be gained for short documents. Thereby the splitting number for the two document
subsets has intuitively been chosen, and it should be considered to find the optimal value
algorithmically in future work.

Extensive evaluations showed that the approach works very well on short documents con-
taining less than 300 sentences, and that the more authors plagiarize, the more likely it is
for the algorithm to detect the according sections. For documents consisting of less than
50 sentences, an F-measure of nearly 70% could be reached. Nevertheless, a drawback of
the approach is that it predicts too much in many cases - i.e. it detects plagiarism where
there is none - leading to a high number of false-positives. Future work should concentrate
on reducing this number to improve the algorithm significantly.

On the other side, the number of false-negatives is low, implying that the approach is
well-suited for ensuring that a document is not plagiarized. Evaluations showed that if the
algorithms states that a document is plagiarism-free, it is right in over 90% of the cases.



Other future work includes the application of the algorithm to other languages like Ger-
man, French or Spanish, which could produce the same or even better results, because
other languages often use more complex grammar syntaxes than English. The more choice
an author has to build his sentences, the more individual style the documents gets, and the
easier it should be for the Plag-Inn algorithm to find irregularities.

The approach could also be adapted to be able to verify and/or attribute authors of single-
author text documents, or to verify authorships in multi-author text documents. Moreover,
as the approach relies on the style of authors, it could be used for genre detection, spam
filtering or recommender systems as well.
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