78 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2021

Leveraging Affective Hashtags for Ranking
Music Recommendations
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Abstract—Mood and emotion play an important role when it comes to choosing musical tracks to listen to. In the field of music
information retrieval and recommendation, emotion is considered contextual information that is hard to capture, albeit highly influential.
In this study, we analyze the connection between users‘ emotional states and their musical choices. Particularly, we perform a large-
scale study based on two data sets containing 560,000 and 90,000 #nowplaying tweets, respectively. We extract affective contextual
information from hashtags contained in these tweets by applying an unsupervised sentiment dictionary approach. Subsequently, we
utilize a state-of-the-art network embedding method to learn latent feature representations of users, tracks and hashtags. Based on
both the affective information and the latent features, a set of eight ranking methods is proposed. We find that relying on a ranking
approach that incorporates the latent representations of users and tracks allows for capturing a user’s general musical preferences well
(regardless of used hashtags or affective information). However, for capturing context-specific preferences (a more complex and
personal ranking task), we find that ranking strategies that rely on affective information and that leverage hashtags as context

information outperform the other ranking strategies.

Index Terms—Emotion in music, emotion regulation, sentiment detection, ranking, music recommendation, microblogging, hashtags

1 INTRODUCTION

EOPLE listen to music for different reasons: to relieve

from boredom, fill uncomfortable silences, social cohe-
sion and communication, emotion regulation, etc. [1], [2].
From an affective computing point of view, it is interesting to
investigate the relationship between a user’s musical prefer-
ence and the user’s emotional state. There have been many
psychological studies on the role of music in emotion regula-
tion [2], [3], [4]. The emotional state of a listener has also been
considered as important contextual information in building
recommender systems [5], [6], [7]. A possible application is to
build a system that monitors people’s emotion and predicts
how to subliminally impact them by recommending different
music pieces. However, as the emotional state of a user is
hard to capture in a large-scale study, most existing studies
are conducted in a laboratory setting. It remains unclear to
which extent such findings can be generalized to the real-life
usage of music [8].

Seeing the popularity of social microblogging websites
such as Twitter,' we have new opportunities to study real-
world music listening behavior at scale [9], [10], [11], [12].
Most interestingly for our study, Twitter allows for
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gathering so-called #nowplaying tweets [9], which are
tweets describing the track a user is currently listening to.
One such example tweet is “#nowplaying Crazy For You by
Adele #Happy”. In this example, the user not only publishes
the music track and artist he/she is listening to, but also
adds a hashtag (i.e., keywords or phrases starting with the
symbol #) describing his/her concurrent emotional state.
Users add these hashtags spontaneously in real life, and
there is an abundant number of such #nowplaying tweets
with affect-related hashtags. We are therefore particularly
interested in how the affective hashtags within a tweet are
related to the user’s musical preferences. For this purpose,
we consider only #nowplaying tweets containing hashtags
that represent some notion of emotion (i.e., contextual infor-
mation), and aim to study their role in providing contextual
affection-aware music recommendations tailored to the
user’s current emotional state and musical preferences. We
have the following two research questions (RQs) to be
answered:

e RQ1: How can affective contextual information con-
tribute to improving personalized ranking of track
recommendation candidates?

e RQ2: How can we computationally represent the
affective contextual information in a #nowplaying
tweet?

There has been excellent work on context-aware recom-
mendation and representation learning [13], [14], [15], [16],
[17], sentiment analysis from text [18], [19], [20], [21], [22],
as well as emotion-based music recommendation [23], [24],
[25], [26]. The main novelty of this study lies in the way we
study the aforementioned two RQs by adapting existing
techniques. Specifically, our study differentiates itself from
the prior arts in the following aspects:
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First, we propose to employ, and compare the result
of two evaluation tasks to highlight the importance of con-
textual information (Section 3). For a given user and a con-
text, the first task requires ranking the relevance of a set
of tracks that are picked at random, whereas the second
task requires ranking a set of tracks that are known (from
the training set) to be associated with the user. While the
first task is mainly about the general preference of a user (i.e.,
which tracks a user would like), the second task requires
modeling the context-specific preference of a user for we
already know that all the candidate tracks are liked by the
user but only one of them can be ranked at top given that
specific listening context. An algorithm cannot perform well
if it does not know how a user’s emotional context affects
his or her musical preference. In comparison, existing work
on context-aware recommendation usually focuses on the
algorithms and simply takes the full catalog of data in their
evaluation [14], [15], [16], [17]. Such an evaluation method
does not distinguish between tracks that have been known
to or not by users, making it hard to assess whether an algo-
rithm learns the general preference or context-specific pref-
erence. This is less a concern for a general recommendation
algorithm but is critical in addressing our RQs.

Second, to investigate the affective contextual information
embedded in the #nowplaying tweets, we propose to treat the
user-track-hashtag association as a graph and use state-of-
the-art network embedding methods [27], [28], [29] to learn
latent feature representations of users, tracks and hashtags
(Section 4.2). By experimenting with different combinations
of the representations (Section 4.3), we can test different
assumptions about the underlying association between users
and tracks. For example, a user can be represented by the
user’'s own latent representation (denoted as “user”), but
can also be represented by the average latent representation
of the hashtags the user has used before in his or her tweets
(“usertag”). Similarly, a track can be represented by its own
latent representation (“track”) or by the average representa-
tion of the hashtags the track has been associated with by dif-
ferent users (“tracktag”). As the hashtags are restricted to be
affect-related ones, “usertag” and “tracktag” may respec-
tively capture the general emotional tendency of a user and a
track. A possible consequence is that, if a track is typically
listened to in a specific emotional context across users,
“tracktag” may outperform “track” in the above-mentioned
second task, for “tracktag” encodes affective information in a
more explicit way. In total, six ranking methods are consid-
ered. To our best knowledge, testing the representations in
such an emotion-centered way has not been attempted before.

Third, in addition to the latent representations, we employ
different sentiment dictionaries proposed in the literature of
sentiment analysis [30], [31], [32], [33], [34], [35] to implement
two ranking methods that solely rely on the sentiment scores
(Section 4.1). In this way, we can study RQ2 using two
approaches: based on the latent representations and based on
the sentiment scores. Our experiments (Section 5) show that
for the first task (capturing a user’s general preferences), uti-
lizing latent representations for users, tracks and hashtags
contributes to better and more personalized ranking results.
However, for the second, more complex and personal con-
text-specific task, the sentiment-aware ranking methods out-
perform the other ranking methods. This finding implies that

TABLE 1
Data Set Statistics
Characteristics ~ Original [9] #NP560k #NP90k
Listening events 21,501,261 564,301 85,528
Tracks distinct 654,012 51,045 31,454
Artists distinct 79,011 8,210 8,020
Users distinct 176,909 9,431 9,336

the more personal and complex a ranking task gets, the higher
the influence and significance of affective information gets.

Finally, although emotion-based music recommendation
is not new, existing work mostly relies on user data col-
lected in a controlled environment and the scale is usually
small [23], [24], [25]. In contrast, our study is based on a
large collection of Twitter data (around 560 K) that contain
real-world music listening information (Section 2). We will
share the data with the research community for reproduc-
ibility and for promoting research in this direction.

2 DATA SETS

Generally, we require a data set that provides information
about the listening behavior and emotional states of users for
conducting the proposed experiments. Therefore, we employ
the #nowplaying data set compiled by Zangerle et al. [9] for
the study, as this data set provides the required information.
The data set is composed of #nowplaying tweets crawled via
the Twitter API [36] and provides the timestamp when the
tweet was sent, an anonymized user id, the tweet’s source
(how it was sent), the contained artist name and track title.
An example listening eventis: <2016-05-1216:26:42,
'7bd5237385a73c54265cd02aal36dbecdb88a0bs’,
‘Twitter Web Client’, ‘Hello, Goodbye’, ‘The
Beatles’>.

To gather a data set that allows for representative user
profiles, we chose to extract all listening events of users
who have sent a minimum of ten listening events in the
years 2014 and 2015 from the #nowplaying data set. The
characteristics of the resulting data set are shown in Table 1
(column “Original”). For our study, we focus on tweets for
which we can detect a sentiment value by using the meth-
ods described in Section 4.1, as only this data allows to eval-
uate the influence of affective contextual information on the
quality of track recommendation rankings. Therefore, we
remove the listening events that do not contain any hashtag
that we can obtain a sentiment score for, leading to a subset
containing 564,301 listening events. Statistics of this
#NP560k data set are listed in Table 1.

Table 2 presents the five-number-summaries describing
the tagging and listening behavior of users within the
#NP560k data set. We also list the tracks and listening
events per user (overall and distinct) as well as the number
of tags per user and per track (overall and distinct). We
observe that while the maximum number of listening events
per user, track and hashtag are very high, the mean, median
and the 1st and 3rd quartile of these characteristics are sub-
stantially lower implying that these distributions are
skewed and do not follow a normal distribution. Also, we
observe a small number of users and tracks that feature pro-
foundly higher numbers for the analyzed characteristics in
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TABLE 2
Five-Number-Summaries of (Left) the #NP560k Data Set and (Right) the #NP90k Data Set
#NP560k #NP90k
Characteristics Median Q3 Max Mean SD Median Q3 Max Mean SD
Listening events per user 2.0 40 69,1970 59.83 1,125.48 2.0 4.0 463.0 9.16 31.70
Listening events per track 2.0 8.0 1,821.0 11.05 33.65 1.0 20 1,031.0 272 10.42
Tracks per user 2.0 40 69,1970 59.83 1,125.48 2.0 4.0  463.0 9.16  31.70
Distinct tracks per user 2.0 4.0 3,500.0 10.95 78.73 2.0 4.0 319.0 6.26 19.03
Hashtags per user 2.0 5.0 86,855.0 74.10 1,446.10 2.0 50 1,025.0 10.84 39.27
Distinct hashtags per user 1.0 3.0 207.0 2.65 5.41 1.0 3.0 108.0 2.57 4.43
Hashtags per track 1.0 1.0 6.0 1.24 0.47 1.0 1.0 6.0 1.17 0.44
Distinct hashtags per track 1.0 1.0 6.0 1.23 0.46 1.0 1.0 6.0 1.16 0.44

We show (from left to right) the median, 3rd quantile (Q3), maximum, mean, standard deviation (SD) of the individual characteristics for both data
sets. The minimum and 1st quantile for both data sets are all ones for all the characteristics.

comparison to the majority of users and tracks. Such heavy-
tailed distributions have been shown to be prevalent in
social networks [37], [38].

Due to the heavy-tailed characteristics of the #NP560k data
set, we chose to introduce a second data set to investigate the
role and impact of outlier users (i.e., users who feature pro-
foundly larger number of listening events). To do this, we cre-
ate a data set that is cleaned from those outlier users and is
less skewed in terms of the number of listening per users than
the #NP560k data set. Hence, we apply an outlier removal
method to the #NP560k data set. Particularly, we keep all
users within the 99th percentile of the distribution and
remove the others, as this outlier removal method has been
shown to be suited for highly skewed distributions [39]. This
presents us with a smaller data set, referred to as the #NP90k
data set in this paper. Table 1 depicts the basic characteristics
and Table 2 presents the five-number-summaries for the
#NP90k data set. While the #NP560k data set features a num-
ber of heavy users (and hence, heavy-tailed distributions),
these are removed in the #INP90k data set, making it less
skewed. Please note that this data set—due to its intended
purpose and creation procedure—features different charac-
teristics as the #NP560k data set.

Please note that we deliberately removed the hashtags
#nowplaying, #listeningto and #listento from the data sets
as at least one of those hashtags is contained in every listen-
ing event and hence do not add any further information.

In these data sets, not only listening events are tagged
with hashtags, also tracks can transitively (via the listening
event the track is mentioned in) be tagged with the respec-
tive hashtags. Similarly, we tag users with hashtags if a
given hashtag is used within one of the listening events sent
by the user. We reason that hashtags have been shown to
serve two roles [40]: i) users wanting to express his/her
thoughts, feelings and opinions, ii) using hashtags to tag the
content of the tweet. For our study, both factors are impor-
tant as we aim to evaluate the potential of affective hashtags
for ranking music recommendations.

3 EVALUATION METHODS

In the following we present the methods deployed for the

evaluation of the ranking methods presented in Section 4.
All the experiments are conducted based on the #NP560k

and #NP90k data sets presented in Section 2. For conducting

the evaluation, we need to split the data sets into training and
test sets and apply different splitting methods for the two
data sets. For #NP560k, we perform the following per-user
split: for each user in the data set, we randomly choose 70 per-
cent of his/her listening events as training data and the
remaining 30 percent as test data. We believe that this splitting
method allows for mitigating the skewness of the data set as
the split is performed on a per-user bases and hence, is robust
against dominating users in data set (i.e., users with a high
number of listening events). In contrast, for the #NP90k data
set that has already been cleaned from outliers (and is there-
fore less skewed), we employ a global split that randomly picks
70 percent out of all listening events of all users for the train-
ing set and uses the remainder of listening events as test data.
These contrasting splitting approaches permit to investigate
the connection between a user’s emotional context and the
user’s concurrent musical preference independent of the size
of user profiles.

For both of these splitting approaches and the underlying
data sets, the latent features of nodes are computed for the
items within the training set only and do not incorporate
any information from the test set.

The basic input items for our evaluation are listening
events, which are tweets containing information about a
track a user listened to. The workflow of the evaluation is
as follows. Based on a listening event randomly chosen of
the test set (hereafter referred to as “input listening event”)
including its affective hashtags, we aim to evaluate the
ranking methods proposed in Section 4.3. We consider the
track contained in this input listening event as our ground
truth data and our goal is to find ranking methods that
rank this ground truth track first in the recommendation
list.

From a recommender system point of view, our data sets
represent implicit feedback data [16], [41]—the data sets rep-
resent traces of user behavior and they only provide us with
the tracks a user has listened to. Our data set does not con-
tain any implicit feedback by users (i.e., play counts, skip-
ping behavior, session durations or dwell times during
browsing the catalog). As most papers dealing with implicit
feedback [41], what we can do is to assume that the user
likes these tracks. We are not aware of the tracks that the
user dislikes. In other words, all the listening events con-
tained in our data sets are positive data, and there is no nega-
tive data at all. This has been referred to as the one-class
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problem [42]. To learn discriminative latent feature repre-
sentations, we need to perform so-called negative sampling
[27], [28], [29] to include user-track-hashtag associations
that are not present in our data sets as negative data (cf. Sec-
tion 4.2). Likewise, for evaluation, we need to sample nega-
tive data to test how our ranking methods can identify the
positive track and rank it on top of the list.

Different ways to perform negative sampling for the test
set represents different evaluation tasks. As described in
Section 1, it is possible to use the full data catalog as nega-
tive data, as many prior work on context-aware recommen-
dation do [14], [15], [16], [17], but in this way we are not
able to properly study the two RQs. Alternatively, we con-
sider the following two evaluation tasks.

First, we aim to evaluate whether our proposed approach
is able to capture the general listening preferences of users.
Therefore, we propose the POP_RND task, where we add
nine randomly chosen tracks to the list containing the input
listening event to populate the list. This task allows us to
evaluate whether our approach is able to capture the gen-
eral listening preferences of users.

Second, we aim to evaluate a context-specific scenario
where we model the sentiment of a user as the context in
which tracks are listened to by users. We consider this sce-
nario as more complex than solely capturing the general lis-
tening preferences of users. Therefore, we propose the
POP_USER task, where we randomly pick nine tracks the
user has previously listened to and add these to the set of
tracks to be ranked. This requires the user to have a listen-
ing history comprising at least ten tracks.

As this task selects tracks that are associated with the
user, we are able to evaluate the performance of incorporat-
ing contextual sentiment and hashtag information in the
ranking computation as we have to employ context infor-
mation to be able to rank those tracks effectively. Therefore,
we argue that this task allows us to directly evaluate the
usefulness of hashtags and sentiment scores.

We propose to evaluate the ranking performance of our
approach for sets of ten tracks. In the field of recommender
systems, a set of 5-10 recommendations is most appropriate
which also corresponds to the capacity of short-term mem-
ory [43]. Furthermore, the work by Bollen et al. [44] under-
lines this choice as the authors conducted an experiments
showing that presenting users with a large number of good
and valuable items is counterproductive as the choice of an
item becomes inherently difficult for the user.

The (unordered) set of ten tracks resulting from the pro-
posed data generation is subsequently used as input for the
recommendation ranking evaluation. In the next step, we
apply the proposed ranking methods to this set of track rec-
ommendation candidates.

As for the evaluation metric, we rely on the mean recip-
rocal rank (MRR) metric [45] as defined in Equation (1) to
evaluate the rank of the single correct item. We choose MRR
as we are only interested in how the ranking methods per-
form in regards to ranking the ground truth track as high as
possible in the ordered list of recommendation candidates.
Ranking the ground truth one as the first item yields a RR of
1, ranking it second yields a RR of 0.5, etc. As the lists to be
ranked in our experiments only contain a single correct
item, the maximum RR obtainable is 1

TABLE 3
Sentiment Dictionaries and Their Coverage of the #NP560k
Data Set; ‘LE’ Is a Shorthand for Listening Event

Coverage

Name #Terms Hashtags  LEs Tracks
AFINN [32] 2,477 57.64%  46.87% 54.67%
Opinion Lexicon [33] 6,789 44.86%  44.35% 47.48%
SentiStrength [34] 2,546 71.23%  73.97% 71.50%
Vader [35] 7,517 57.63%  57.80% 61.54%

RR(item) ! )

item) = —————.
rank(item)

In total, we repeat this evaluation procedure for a set of
20,000 listening events randomly extracted from the test set
for all the proposed ranking methods and consequently,
determine the MRR for the set of all ranked recommenda-
tion lists contained in the evaluated set of listening events.
We use these to compare the performance of the ranking
methods and the underlying latent features.

4 COMPUTATIONAL METHODS

In the following section, we present the methods utilized for
leveraging affective hashtags for music recommendations.

4.1 Sentiment Detection for Hashtags

The extraction of sentiment polarity from a given word, sen-
tence or text has been studied widely [18], [19]. Also, senti-
ment detection in the context of Twitter has been addressed
by research [20], [21], [22]. In this study, we focus on hashtags
that express emotion. Therefore, we aim to detect the senti-
ment of hashtags in a first step. For this task, we rely on a
widely used unsupervised sentiment detection method: so-
called sentiment lexica [19]. In principle, sentiment lexica are
dictionaries of words, where each word is annotated with its
polarity (and possibly, also the strength of this polarity). For
detecting the sentiment of a term, it is simply matched against
a given lexicon. In the following, we describe the specific steps
taken for assigning sentiment values to the hashtags within
our data set.

4.1.1 Sentiment Dictionaries

We rely on well-established dictionaries which have been
widely used and evaluated [30], [31]. In particular, we use
the dictionaries that provide both the best coverage and
performance in terms of accuracy according to the study
of Ribeiro et al. [30]. Table 3 contains an overview of the
adopted lexica.

The AFINN dictionary [32] was assembled from a set of
different word lists (e.g., obscene words and internet slang
words) and manually annotated by a single annotator.
Opinion Lexicon [33] is computed by using antonym and
synonym relationships among words and using this infor-
mation to deduce scores for adjectives. The SentiStrength
lexicon [34] is based on a manually annotated dictionary,
which is subsequently improved by adjusting the scores by
machine learning techniques. The Vader dictionary [35] is
also created by human annotation and is particularly geared
towards sentiment analysis of social media texts.
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4.1.2 Affection Computation

Based on the set of hashtags contained in the data set, we
employ the following strategy to resolve hashtags against a
given sentiment dictionary. Firstly, we aim to match full hash-
tags against the dictionary, both lowercased. However, this
does only match hashtags which represent full proper English
words (e.g., #happy). For all other hashtags, we apply
lemmatization, as provided by the Python NLTK Wordnet
package.”> Consequently, we match these lemmata against
the lemmata of the given lexicon. For hashtags that cannot be
resolved directly or after lemmatization, we assume that these
are either compound words or can simply not be found in
the given dictionary. As for compound hashtags, these can
either be written as camel case as e.g., # ITAmHappy or a concat-
enation of multiple lowercased terms as e.g., #feelinggood.
We aim to split these compound hashtags to match the single
terms contained in the hashtag against the sentiment dictio-
naries. Therefore, we use the split words (i.e., {I, am, happy}
for the above example) to represent the hashtag. As for camel
case-hashtags, we split the hashtag using upper-case charac-
ters as delimiters. The problem of segmenting all-lowercase
compound hashtags has already been addressed in literature
[46]. Therefore, we follow previous work [47] to split these
up. As the sentiment lexica are limited to English words, we
base our approach on a dictionary of 109,582 English words.’
We split the original hashtag at each position and look into
whether the prefix is contained in the dictionary. If it is con-
tained, we recursively repeat the procedure until we find an
optimal result. Once we found a representation of the hashtag
that consists of a set of individual terms using the methods
described, we match these terms against the sentiment lexicon
individually. We assign the hashtag the mean of the sentiment
scores of all terms contained in the original hashtag.

Table 3 features an overview of the coverage of the differ-
ent sentiment lexica. Here, we list the percentage of hash-
tags that can be resolved against the various dictionaries for
the #NP560k data set. Similarly, we also list the fraction of
listening events and tracks that can be assigned a sentiment
value using the respective dictionary. Please note that
despite the difference in size between the #NP560k and
#NP90k data sets, the coverage of the individual sentiment
lexica is comparable for both data sets and hence, we only
list the coverage numbers for the #NP560k data set here.
Besides using these single sentiment dictionaries, we also
propose to exploit the variety and extended coverage of the
combination of multiple dictionaries by using the mean
value of all sentiment values across all available sentiment
dictionaries gathered for a given hashtag.

The lexica have different ranges of polarity scores (e.g.,
AFINN from — 5 to 5, and Opinion Lexicon from —1 to 1).
Therefore, before computing the mean values, we normalize
them by using linear min-max feature scaling.

4.2 Computation of Latent Features

While there are many methods for learning feature repre-
sentations of users, tracks and hashtags from listening data,
we employ the so-called network embedding technique [27],
[28], [29] to learn such representations. The task of network

2. http:/ /www.nltk.org/howto/wordnet.html
3. http:/ /www-01.sil.org/linguistics/wordlists /english/
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Fig. 1. Suppose the task is modeling the user-track pair (u, ¢2), the origi-
nal modeling function requires to compute all pair-wise estimations (i.e.,
(u,t1), (u,t2), (u,t3)) while the transformed hierarchical softmax com-
putes the estimations with only the passing nodes (i.e., (u, b1), (u, b2)).

embedding is to learn the low-dimensional representations
of vertices in an information network that can capture and
preserve the network structure in the representations. Such
network embedding methods are useful for modeling data
containing heterogeneous types, which is exactly the case
here as we have users, tracks and hashtags to be modeled.
In particular, we build a graph containing these three object
types from the data sets and then use a network embedding
algorithm to learn their representations. Although several
network embedding models have been proposed, for this
work we use the well-known DeepWalk approach [27].
DeepWalk is one of the most popular network embedding
algorithms owing to its effectiveness in modeling the global
structure of the input graph [27]. The algorithm learns low-
dimensional latent feature descriptions for all the vertices
(including users, tracks, and hashtags) within the graph,
allowing to compute their similarity in a joint feature space.

Given a graph G and its vertices V' and edges E, the
objective is to model the following conditional probabilities:

sim(v, v;)

>, stm(vi, vg)

where sim is a function that measures the similarity
between two vertices v; and v; based on their representa-
tions. Therefore, the vertices sharing similar neighbors
receive similar conditional probability distribution.

To obtain the low-dimensional representations of each ver-
tex, we further conduct a mapping function ®:v eV —
RIV*d in Equation (2) to map the node v into a low-dimen-
sional vector ®(v), which also satisfies the above objective
function

(2)

p(vjlvi) =

sim(P(v;), vj)
E,Uk sim(P(v;), vy)

p(v;|®(vi)) = ®3)

Instead of computing all vertex pairs, which is quite
expensive owing to the number of given vertices, DeepWalk
factorizes the conditional probability using the hierarchical
softmax [48] to assign each vertex a series of binary codes
by Huffman tree construction. For a pair (¢, j), suppose the
path to vertex v; is identified by a sequence of tree nodes
[bo, b1, .. .], then the final objective is converted to multiple
binary classification predictions:
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Fig. 2. The paths (right) are generated by random walks according to the
given graph (left). When the window size is set to two, the connected verti-
ces within two steps are treated as the context information of the centered
vertex. In this way, vertices with similar neighbor connections will receive
similar connection status and thus, receive similar probability distributions.

Path 3:
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Thereby, the computational complexity is reduced by the
transformation from O(|V|) to O(log|V]). Fig. 1 shows the
idea of the hierarchical softmax transformation.

To further efficiently learn the low-dimensional representa-
tions, DeepWalk also uses sampling techniques for conducting
the concept of random walk, which is a common technique
when dealing with a huge graph. Fig. 2 plots the stochastic
random walk of DeepWalk. It uses a random walk strategy to
generate a path, and then adopts a certain window size to
dynamically sample the observed pairs (v;,v;) for modeling
Equation (4). The appearing probability also implies the reach-
ability between two vertices, and can serve as sim in Equa-
tion (2). Finally, the vertices which share similar neighbors
will pass similar tree node paths and thus, receive similar rep-
resentations. For optimizing the representations, stochastic
gradient descent [49] is utilized.

Differently designed graphs underlying the DeepWalk
computation can lead to different assumptions on the rela-
tionships among the vertices in the graph.

In a conventional recommendation task, the connections
between users and tracks (i.e., listening events) provide the
most useful information about users’ taste on music. Hence,
we build a user-to-track graph (12¢) as the baseline network.

In our study, to analyze the impact of hashtags, we further
add the connections between tracks and hashtags to the base-
line network. Although there are several other ways to con-
struct the graph, such as ‘u2t?2h’ (i.e., no direct connection
between users and hashtags), ‘u2h2t’ (i.e., no direct connec-
tion between users and tracks), ‘t2u2h’ (i.e., no direct connec-
tion between tracks and hashtags), and ‘uth’ (i.e., allowing
connections among users, tracks and hashtags), we select
u2t2h out of the other four because in this way, the sampled
random walks will always visit a track every two steps, as
demonstrated in Fig. 2. According to our observations, plac-
ing the tracks at the center of the modeling process in this way
obtains better representations. Consequently, we employ the
following two input graphs for computing the DeepWalk
latent features:

e u2t: This represents the user-to-track bipartite graph,
the relations of which are determined by whether

a user has listened to a track in previous listening
events.

e u2t2h: The user-to-track-to-hashtag graph that fur-
ther considers the links between a track and its
hashtags.

4.3 Ranking

The goal of ranking is to list the most suitable items (tracks
in this study) on top. It is therefore a crucial task not only in
recommender systems [50], but also more generally in the
area of information retrieval [51] as it directly influences
precision of recommendations or search results.

The main building blocks for computing a ranking for a set
of recommendation candidates are users, tracks and hashtags
that are extracted from the graph. The employed network
embedding technique allows us to represent users by the
latent features computed for users. We refer to this represen-
tation as “user”. To also explicitly incorporate the hashtags
that a user has previously adopted into the user’s representa-
tion, we propose to use the latent representations of the hash-
tags the user made use of, leading to the user representation
“usertags”. A user may also be represented by the average sen-
timent value assigned to these hashtags as a measure of the
user’s general sentiment, which is a scalar. We refer to this
user representation as “usersent”. Similarly, we may model a
track by its latent representation in the graph (“track”), the
latent representations of all the hashtags which have been
used to tag the track (“tracktags”), or the average sentiment
value assigned to these hashtags as the track’s general senti-
ment (“tracksent”). Furthermore, we aim to exploit informa-
tion about the hashtags which are used for the given input
tweet by using the average latent representation of these hash-
tags, leading to the representation of a tweet (“tweettags”).
Besides solely relying on latent features, we also propose to
represent the input tweet as the sentiment value associated
with the hashtags mentioned in the input tweet (“tweetsent”).

Based on these building blocks, we propose the following
methods for ranking a given set of tracks. In principle, these
methods differ in the way users, tracks and hashtags are
characterized.

e user_track: rank according to the similarity of the
latent representations of a given user and track.

e user_tracktags: rank according to the average pair-
wise similarity of the latent representation of the
user and the individual latent representations of
hashtags annotating the given track.

e usertags_track: rank according to the average pairwise
similarity of the latent representations of hashtags a
user has made use of and the latent representation of
the track.

e usertags tracktags: rank according to the average
pairwise similarity of the latent representations of
the hashtags of a user and the latent representations
of hashtags used for annotating the given track.

o tweettags_track: ranking computed based on the aver-
age pairwise similarity of the latent representations
of the hashtags used in the given input tweet and the
latent representation of the track to be ranked.

o tweettags_tracktags: rank according to the average pair-
wise similarity of latent representations of hashtags of
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the input tweet and hashtags annotating the track to be
ranked.

e tweetsent_tracksent: rank according to sentiment score
similarity by using the difference of the sentiment
scores assigned to the input tweet and the sentiment
scores assigned to the tracks to be sorted. If a tweet
or track features more than a hashtag, we compute
the average sentiment score assigned to the track
and compute the difference between these as

sim = abs(avg(sent(tweet)) — avg(sent(track))),  (5)

where sent determines the set of sentiments assigned
to a given tweet or track.

e usersent_tracksent: rank according to the sentiment
score similarity between the average sentiment of
the user’s previously used hashtags and the senti-
ment values annotating the track.

We can use either the cosine similarity or the Euclidean
distance to compute the similarity between two latent repre-
sentations. This similarity score is subsequently used to
actually rank the tracks in order of descending similarity.

5 RESULTS

We conduct three experiments in our study. The first and
fundamental experiment aims to verify that utilizing an
embedding approach is beneficial in our setting and that
embedding approaches allow to capture a user’s general lis-
tening preferences. The second experiment (and for us, the
central experiment) aims to extensively evaluate the perfor-
mance of different ranking methods and hence, the impact
of affective contextual information extracted from hashtags.
The third experiment is targeted at complementing our
view on sentiment-based ranking methods and investigates
the performance of individual sentiment lexicon. We pres-
ent the results below.

5.1 Experiment 1: Effectiveness of Latent Features
In the first experiment, we aim to show that incorporating
latent features contributes to a better ranking, capturing the
general listening preferences of users. We therefore base
this evaluation on the POP_RND task and evaluate the per-
formance of the user_track ranking method (similarity of
latent features of users and tracks), where latent features are
computed based on the user-to-track graph (u2t). Hence, we
do not consider any hashtag or affective information in this
first experiment. We compare this approach with the fol-
lowing baseline methods:

e A random ranking approach that randomly shuffles
the items within the recommendation list;

e Ranking according to the tracks’ popularity within our
data set (i.e., the number of distinct users having lis-
tened to the track) [52], [53]. Picking random items or
the most popular items are basic and simple baselines
often used for dealing with the cold-start problem [52];

e An item-item-based collaborative filtering approach
based on the k-nearest neighbors (kNN) [54]. We set
the size of the neighborhood k to 30 and use cosine
similarity to measure the similarity between items, fol-
lowing the suggestion of Sarwar et al. [54]. Herlocker
et al. have also found that generally, a neighborhood

TABLE 4
The Mean Reciprocal Rank (MRR) Achieved by Different Rank-
ing Methods for POP_RND for Both the #NP90k and #NP560k
Data Sets (Standard Deviation in Parentheses)

Ranking Method #NP560k #NP90k
Random 0.29 (0.26) 0.29 (0.26)
Most popular tracks 0.73(0.32)  0.76 (0.30)
kNN 0.81 (0.33) 0.79 (0.35)
user_track (u2t embedding; cos.) 0.92 (0.21) 0.81 (0.34)
user_track (u2t embedding; eucl.) 0.83 (0.31) 0.68 (0.41)

size of 20 to 50 seems reasonable for real-world
settings [55].

There are a few parameters to be empirically decided for
the DeepWalk algorithm for learning the latent features. In
a preliminary study we found that the following setting
works reasonably well: dimension of the latent representa-
tion, which controls the model complexity—64, number of
walks and the walk length, which control the number of
sampling pairs for the modeling stage—16 and 64 respec-
tively, the window size, which determines the reachable
vertices—4. We use this parameter setting throughout the
following experiments, for both u2t and u2t2h.

The results of the conducted analysis are listed in Table 4.
As can be seen, incorporating latent features increases the
quality of the ranking compared to the baseline methods.
The random baseline reaches an average MRR of 0.29 for
both data sets, while ranking according to the popularity of
tracks reaches a MRR of 0.73 (#NP560k data set) and 0.76
(#NP90k data set). Among the baselines, the item-item col-
laborative filtering baseline (kNN) reaches a MRR 0.81
(#NP560k data set) and 0.79 (#NP90k data set), respectively.

The use of latent representations of tracks and users
increases the MRR to 0.92 for #NP560k and 0.81 for #NP90k.
Also, cosine similarly outperforms euclidean similarity. Gen-
erally, from this first experiment we conclude that incorporat-
ing latent features in the ranking process yields improved
results compared to the evaluated baseline approaches.
Hence, this validates the effectiveness of the latent features
for capturing a user’s general musical preferences.

5.2 Experiment 2: Effectiveness of Affection and
Hashtag Information

The goal of this experiment is to examine the benefit of
incorporating hashtag and affective information into the
ranking process. Ultimately, we aim to evaluate the perfor-
mance of the individual proposed ranking strategies in a
context-aware ranking task. Therefore, we consider both the
POP_RND and POP_USER task in this experiment.

Table 5 depicts the results of this evaluation for the
#NP560k data set and Table 6 presents the results for the
#NP90k data set. As our experiments showed that cosine simi-
larity consistently outperforms Euclidean similarity by a
small margin, we only list the results of cosine similarity. For
POP_RND, we see that the best results are obtained by the
user_track ranking method, achieving a MRR of 0.92 (u2t
embedding; #NP560k data set) and 0.83 (u2t2h embedding;
#NP90k data set). For the #NP90k data set, usertags_track also
reaches a MRR of 0.83. As for the user_track ranking method,
we do not observe substantial differences between ranking
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TABLE 5
The MRR Achieved by Different Ranking Methods, Using
Cosine Similarity for the #NP560k Data Set
(Standard Deviation in Parentheses)

Ranking method Graph POP_RND POP_USER
user_track u2t 0.92 (0.21) 0.28 (0.26)
user_track u2t2h 0.91 (0.22) 0.29 (0.26)
user_tracktags u2t2h 0.88 (0.26) 0.80 (0.32)
usertags_track u2t2h 0.89 (0.24) 0.29 (0.26)
usertags_tracktags u2t2h 0.84 (0.29) 0.78 (0.32)
tweettags_track u2t2h 0.89 (0.23) 0.32 (0.29)
tweettags_tracktags u2t2h 0.86 (0.27) 0.80 (0.31)
tweetsent_tracksent — 0.81 (0.34) 0.82 (0.30)
usersent_tracksent — 0.39 (0.30) 0.68 (0.32)
TABLE 6

The MRR Achieved by Different Ranking Methods, Using
Cosine Similarity for the #NP90k Data Set
(Standard Deviation in Parentheses)

Ranking method Graph POP_RND POP_USER
user_track u2t 0.81 (0.34) 0.22(0.22)
user_track u2t2h 0.83 (0.32) 0.22 (0.21)
user_tracktags u2t2h 0.79 (0.33) 0.56 (0.37)
usertags_track u2t2h 0.83 (0.31) 0.25 (0.23)
usertags_tracktags u2t2h 0.74 (0.34) 0.59 (0.37)
tweettags_track u2t2h 0.84 (0.30) 0.36 (0.33)
tweettags_tracktags u2t2h 0.78 (0.34) 0.65 (0.37)
tweetsent_tracksent — 0.70 (0.37) 0.71 (0.35)
usersent_tracksent — 0.42 (0.32) 0.53 (0.32)

approaches incorporating hashtags (i.e., u2t2h) and those not
incorporating hashtags (i.e., u2t) in the latent features repre-
sentation. As for the other ranking approaches, we observe
that usersent_tracksent, user_tracktags, tweettags tracktags
and usertags_tracktags reach lower MRR values. Notably, the
tweetsent_tracksent ranking method, which solely relies on
the sentiment scores associated with the tracks to be ranked
and hashtags the user made use of in the current input tweet,
achieves 0.81 (#NP560k data set) and 0.70 (#NP90k data set).
In contrast, for POP_USER, we can see from Tables 5
and 6 that the sentiment ranking method tweetsent_tracksent
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outperforms all other methods, achieving the highest MRRs
of 0.82 (#NP560k data set) and 0.71 (#NP90k data set), respec-
tively. The results support our hypothesis that sentiment
hashtags and embeddings incorporating hashtags allow for
better capturing a user’s context and hence, exploiting this
information for ranking track candidates. For a better compar-
ison, we also provide a boxplot of the MRR for both data sets
in Fig. 3. The other sentiment-based ranking method, user-
sent_tracksent, achieves a MRR of 0.68 and 0.53, respectively.
Notably, these methods do not use latent features. Methods
utilizing “tracktags” for representing tracks, including user -
tracktags, tweettags_tracktags, and usertags_tracktags, also
perform well and reach a MRR around 0.80 for #NP560k and
0.60 for #NP90k. In contrast, the user_track method performs
poorly here, with a MRR below 0.30 across all settings. In gen-
eral, methods using “track” for representing tracks do not
perform well. These findings suggest that contextual affective
information and in general, information about the tags used
to describe tweets or tracks is indeed exploited in this task.
This is also signaled by the fact that methods that incorporate
latent features of hashtags and sentiment information per-
form substantially better than the approach not incorporating
such information.

In sum, we argue that ranking tracks the user has already
listened to is more challenging than ranking a set of randomly
chosen tracks as these traditionally differ more. Therefore, we
consider this result as promising. Our experiments also show
that both data sets (and hence, splitting methods regarding
training and test data) deliver robust and consistent results.

5.3 Experiment 3: Effectiveness of Individual
Sentiment Lexica

In this experiment we aim to get a deeper understanding for

the performance of different sentiment detection approaches

or rather, lexica. Therefore, we now focus on the performance

of the sentiment-aware ranking methods and firstly evaluate

the performance of single sentiment lexica.

The usage of sentiment dictionaries for the detection of sen-
timent in a text is naturally limited by the coverage of the
given sentiment dictionary (cf. Section 4.1 regarding the cover-
age of the sentiment lexica used). This limited coverage conse-
quently constrains the number of affective hashtags detectable
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Fig. 3. Boxplot of MRR achieved by different ranking methods using POP_USER (u2t2h embedding; black square marks mean value across all

evaluations).
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TABLE 7
Performance (in MRR) of Different Sentiment Dictionaries for
tweetsent_tracksent in the #NP560 Data Set
(Standard Deviation in Parentheses)

TABLE 8
Performance (in MRR) of Different Sentiment Dictionaries for
tweetsent_tracksent in the #NP90 Data Set
(Standard Deviation in Parentheses)

Dictionary Fallback POP_RND POP_USER  Dictionary Fallback POP RND POP_USER
AFINN None 0.79 (0.34) 0.79 (0.34) AFINN None 0.68 (0.39)  0.68 (0.37)
Opinion Lexicon None 0.81 (0.32) 0.80 (0.33) Opinion Lex. None 0.71 (0.38)  0.69 (0.37)
SentiStrength None 0.85(0.29) 0.85 (0.27) SentiStrength None 0.72(0.36)  0.73(0.35)
Vader None 0.87 (0.25) 0.85 (0.29) Vader None 0.77(0.33)  0.77(0.34)
AFINN user_track 0.85 (0.29) 0.81 (0.31) AFINN tweettags_tracktags 0.77(0.35)  0.68 (0.36)
Opinion Lexicon user_track 0.86 (0.28) 0.82 (0.31) Opinion Lex.  tweettags_tracktags 0.79 (0.33)  0.68 (0.36)
SentiStrength user_track 0.86 (0.28) 0.84 (0.29) SentiStrength  tweettags_tracktags 0.76 (0.35)  0.73 (0.34)
Vader user_track 0.89 (0.24) 0.85 (0.28) Vader tweettags_tracktags 0.80 (0.22)  0.74 (0.34)

using any single dictionary which further limits the number of
tracks which can be actually assigned with a sentiment score.
Thus, only a limited number of tracks can be compared in this
regard.

To compare the different lexica nonetheless, we propose
the following method. For those tracks, users and tweets for
which we can compute a sentiment score using the given dic-
tionary, we rely on the best performing ranking method
tweetsent_tracksent as evaluated in the previous experiments.
However, for the remaining tracks, users and tweets with no
sentiment scores, we employ a fallback method. Here we dis-
tinguish two cases: i) if we cannot detect a sentiment score for
either the user or the tweet, we use the fallback method for all
the tracks to be ranked; ii) if we cannot detect a sentiment for
a track (or a set thereof), we compute the similarity of user (or
tweet; depending on the ranking method) and the track using
the fallback method. As for the fallback methods, we chose to
use and evaluate the best-performing ranking methods not
relying on affective information for each task. Hence, we eval-
uate user_track for POP_RND and tweettags_tracktags for
POP_USER as fallback methods, respectively and utilize the
average sentiment score detected for a given tweet or track for
the comparison.

Tables 7 and 8 show the results for the #NP560 and #INP90k
data set, respectively. Here, we consider POP_RND as a spe-
cial case as the best performing method is not sentiment-
based and the user track fallback method performs better
than the sentiment-aware ranking methods. Hence, the usage
of such a fallback method naturally increases the performance
of the evaluation where the degree of improvement depends
on the coverage of the dictionary used. However, the goal of
this evaluation is to evaluate the individual dictionaries and
therefore, we still list the results. To provide a complete pic-
ture of the results, we also list the performance of the individ-
ual sentiment dictionaries when no fallback method is used
(i.e., ‘Fallback None’). As the table shows, the best results (by
a slight margin) are obtained using the user_track fallback
method. Examining the dictionaries used, we do observe
slight differences but note that Vader performs the best. As
for POP_USER, we observe that in this case, using no fallback
method performs slightly better than using the fallback
method as our experiments in Section 5.2 already showed
that tweetsent_tracksent is the best performing ranking strat-
egy (again, by a moderate margin). As for the individual dic-
tionaries, we find that the differences in regards to the MRR
are rather moderate with Vader again performing the best for
both the user- and the tweet-based sentiment ranking.

6 DiSCuSsSION

We further discuss the evaluation results in this section.

In the first experiment we showed that representing
tweets, tracks and users by latent features computed
by the DeepWalk algorithm and using similarities between
these for ranking tracks achieves comparable results
as traditional ranking methods. Therefore, we conclude
that these latent representations are able to capture users’
general listening preferences and that those can be used
for ranking tracks in a recommendation or retrieval sce-
nario. Our experiment comparing the performance of
user_track learned from u2t and u2t2h sees marginal dif-
ferences in terms of MRR, for either POP_RND or POP _-
USER. In this scenario, these findings signal that hashtag
information integrated in the computation of latent fea-
tures does hardly influence the resulting latent feature rep-
resentations for users and tracks.

However, using u2t2h as the underlying graph permits
learning the latent feature representations for hashtags,
which is useful for the POP_USER task. That is, for the
context-aware ranking task, hashtags (providing contex-
tual information) naturally contribute to an improved
ranking. Analyzing the results of the different proposed
ranking methods in our second experiment, we find that
using the latent representations of hashtags that are used
to tag tracks (i.e., “tracktags”) seem to be more representa-
tive of a track than using solely the latent representation
of the track itself (i.e., “track”) for POP_USER. We can
observe that tracktags performs substantially better over
all configurations. However, this does not hold for
POP_RND. These findings suggest that for POP_RND, the
latent representation of a track seems more suitable than
using the hashtags annotating a track. This shows that for
capturing a user’s general listening preferences, utilizing
the latent representations of users and tracks are sufficient
for computing a suitable ranking.

Similarly, users can either be represented by the user’s
latent feature representation (“user”) or by the latent repre-
sentations of the hashtags the user made use of (“usertags”).
However, we encounter mild differences between the per-
formance of these two representations for either POP_RND
or POP_USER. Hence, we conclude that the differences of
different representations for users are hardly distinctive.

Among the two sentiment-based ranking methods, we find
that using the sentiment of the input tweet (“tweetsent”) per-
forms better for both POP_RND and POP_USER. These
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Fig. 4. Cumulative ranking distribution of different methods for the #NP560k data set.

results suggest that using the sentiment expressed by the user
in the current tweet captures the current affective context bet-
ter than using the average sentiment a user has previously
expressed through hashtags. This can also be seen in Fig. 4,
which plots the cumulative ranking function for the random
baseline and the ranking methods user_track, user_tracktags,
tweetsent_tracksent (utilizing the average score across all sen-
timent lexica). For POP_RND we observe that user_track pro-
vides superior results across all ranks incorporated. In
contrast, for POP_USER we observe that user track shows
behavior highly similar to the random ranking approach
(those two lines actually overlap heavily), whereas tweet-
sent_tracksent and user_tracktags perform substantially bet-
ter across all ranks.

From these experiments we observe that choosing a
suitable representation for tracks, users and tweets is cru-
cial for the quality of the ranking. We find that for
POP_RND, comparing the latent representations of users
and tracks is sufficient to provide high-quality ranking of
tracks. However, the POP_USER experiment showed that
this does not suffice when the ranking task gets more per-
sonal and complex. This experiment showed that ranking
based on contextual affective information performs best.
Particularly, the tweetsent_tracksent ranking method out-
performed the other methods. From these findings we con-
clude that while for the POP_RND task the Ilatent
representations did capture the user’s preference well, for
the POP_USER task the sentiment did capture the user’s
musical interest better.

The third experiment aimed to evaluate the performance
of the individual sentiment lexica and hence, their suitabil-
ity for this task. We observed that Vader performed best
across all evaluations. However, we have to note that the
differences are rather moderate. Given that Vader performs
similar to the other dictionaries in terms of coverage, we
lead this back to the fact that Vader is a particularly geared
towards social media texts.

Our evaluation design proposes a fallback method to com-
pensate for those tweets, users and tracks which could not be
assigned with a sentiment score using the given dictionary.
This naturally implies that the choice of the fallback ranking
method is vital. We propose to evaluate the best performing
algorithm not considering sentiment data. For POP_RND,
the fallback methods individually perform better than the

sentiment-based ranking methods. Thus, an improvement of
the results when introducing user_track is an obvious result.
The tweettags tracktags ranking method is also able to
improve the results, though to a lower degree. As already laid
out, we consider the POP_USER task as the more difficult and
personal task. For this evaluation, results worsened by the
fallback methods as expected, since these methods did not
perform as well as the sentiment-based methods in the previ-
ous experiments. From these results we reason that imple-
menting a fallback method is a good choice as it provides
means for compensating the lack of coverage. Also, we con-
clude that choosing the fallback method according to the com-
plexity and degree of how personal the ranking task is, seems
plausible. As for the choice of sentiment dictionaries, we pro-
pose to employ the union of multiple dictionaries to increase
coverage. While our experiments show that minor improve-
ments for single dictionaries, we argue that in this case, cover-
age should be prioritized as it allows for a higher applicability
of the sentiment-based ranking, which has shown to perform
better.

We also aim to acknowledge the limitations of the work
presented. Relying on sentiment dictionaries for detecting
the sentiment of hashtags is a rather naive approach. While
we believe that this method is sufficiently elaborate for the
experiments conducted, there are a number of shortcom-
ings. Firstly, the approach is highly dependent on the
underlying dictionaries and their coverage (as shown in our
experimental results). Second, matching hashtags (either
full hashtags or parts thereof) against sentiment dictionaries
is agnostic to linguistic aspects such as adverbs that describe
the extent and strength of emotions (such as in #verysad) or
negations (such as #notfunny). We aim to extend and
enhance the sentiment detection method utilized in future
work by utilizing state-of-the-art approaches for sentiment
detection. Regarding the computation of rankings, some of
our methods rely on computing the mean values of e.g.,
sentiment scores detecting in listening events of a user. This
approach is insensitive to high variance in the underlying
data. Particularly, for users with high variance in their senti-
ment scores, taking the average of these scores dilutes this
highly useful information. Therefore, we aim to look into
more sophisticated approaches to represent such distribu-
tions using e.g., probabilistic models such as Gaussian
mixture models [56] in our future work.
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7 BACKGROUND AND RELATED WORK

Before concluding the paper, we give a brief review of
related work in psychology and recommender systems, to
put this work in the context of the literature.

7.1 Psychological Studies on Emotion Regulation
Emotion regulation is important for the performance and
well-being of mankind [57]. It is widely accepted that emo-
tions play a major role in driving our decisions. Beneficial
emotion regulation strategies help people to stay calm under
stress, handle failures in a mindful and positive way, etc. Due
to its importance, emotion regulation has been recognized as
one of the fastest growing areas within the field of psychology
(58], [591.

Emotion regulation has also been identified as an essen-
tial reason for musical engagement [3], [60], [61]. Boer and
Fischer [62] found that emotion regulation represents the
most important personal use of music across human sub-
jects from four cultural backgrounds. Goethem and Sloboda
[3] found that music listening is the second-most used tactic
for emotion regulation, just behind “talking with friends”.*

Saarikallio et al. [63] found that a person’s general ten-
dency to emotionally appreciate, enjoy and react to music
(i.e., emotional reactivity to music) is positively correlated with
the tendency to use music for emotion regulation (i.e., emo-
tional use of music). Being familiar with a music piece increases
a person’s emotional use of that piece in daily life [63]. More-
over, informal engagement through listening, but not formal
musical training, correlate with heightened emotional use of
music. Saarikallio also argued that music should not simply
be considered as one emotion regulation mechanism, but
rather as a tool for realizing several different emotion regula-
tion strategies, including positive mood maintenance, relaxa-
tion and revival, induction of strong emotions, diverting
away from worries, discharging negative emotion, mentally
working through emotion preoccupations, and finding solace
and understanding [64]. Individual differences in the use of
these strategies have also been noted: e.g., some prefer emo-
tional reinforcement of current experiences, while others pre-
fer to distract themselves and change emotions [65], [66].

While many psychological studies were conducted in the
lab with small to medium sample size, what we investigate
here is the relationship between a user’s self-report emo-
tional state and the self-report musical preference through
Twitter at scale and “in the field.” Moreover, a computa-
tional approach that investigates how to represent the affec-
tive information of users and music using machine learning
and sentiment detection techniques is taken. Although our
study may also lead to psychological insights, the focus is
more on the engineering side, targeting at applications such
as affective music recommendation.

There have been psychological evidences showing that
the emotional state of users affects musical preference. For
example, depressed patients expressed an intensified
response to sad-sounding music when compared to healthy
controls [67]. Moreover, such patients evaluated negative-
valence music as significantly more sad and angry than
healthy controls did [68]. However, according to Gross [57],

4. The other tactics considered in their study include “exercising”,

“reading a book/magazine”, “watching TV /movie”, among others [3].

people do not always attempt to stay away from negative
emotions. Reasons for up-regulating negative emotions
include promoting a focused, analytic mindset; fostering an
emphatic stance; and influencing others” actions.

An interesting research direction is therefore to use Twit-
ter data to computationally study the effect of music in emo-
tion regulation at scale using a longitudinal approach. This
requires tracking specific users’ #nowplaying tweets and
emotional states over time, which to our knowledge has not
been attempted before. We leave this as a future work.

Finally, we remark that Hargreaves and North [60] pro-
posed that music has three types of psychological functions:
cognitive, emotional, and social functions. The focus of this
paper is on the emotional functions of music, neglecting the
possible social functions manifested in the Twitter data.

7.2 Affective Multimedia Recommendation
Contextual factors relevant to music recommendation may
include the time, location and device of music listening,
user’s present emotional state and activity, etc. [69]. While it
is relatively easier to infer some of these factors from sen-
sors such as clocks, GPS and accelerometers [70], [71], [72],
accessing the emotional state of a user is more difficult. As
users may not always be willing to report their emotions,
computational methods for user emotion prediction from
facial expressions, prosody cues, text, and physiological sig-
nals have been widely studied [73], [74], [75].

With 40K blog posts collected from the social blogging
website LiveJournal,” Yang and Liu [76] investigated the
relationship between the emotional state of a user and the
emotion of preferred music pieces. Similar to the Twitter
data set we use in this paper, the LiveJournal data set they
employed also contains the self-report emotional states and
self-report preferred music pieces [77]. Yang and Liu [76]
used audio signal processing and machine learning techni-
ques to recognize the emotion of the music [78] and then
correlated the emotion in music with the emotional state of
the users, finding that users do prefer music of different
emotions in different emotional states. Following this work,
Chen et al. [26] showed that considering the emotional state
of a user indeed improves the quality of music recommen-
dation, comparing to conventional collaborative filtering
approaches that do not use affective information. This arti-
cle extends from these two prior articles in that we use a
larger data set and more sentiment detection methods.

Ferwerda and Schedl [6] proposed the idea of exploiting
both the personality and emotional state of a user for music
recommendation, but did not actually implement such a sys-
tem. Rosa et al. [7] built a system that recommends music
according to the emotional states inferred from user-generated
text by sentiment detection, but the system was evaluated
using a small-scale data set collected from a crowdsourcing
platform, not from social media websites. Deng et al. [23]
assumed that the emotional state of a user can be determined
by the emotions of the music pieces the user just listened to.
There are some other affective music recommender systems
proposed in the literature, but many of them require users to
indicate their present emotional states or the desired emotions
of the music [24], [25], [79].

5. http://www livejournal.com
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Affective movie recommendation has also been studied
in recent years, using mainly the users’ self-report emo-
tional states [80], [81], [82]. Although it might be possible to
crawl movie preference data from social platforms such as
Twitter, few attempts have been made thus far.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a set of novel methods for
ranking music recommendation candidates. In particular,
we proposed to represent the building blocks (users, tracks,
affective hashtags) by their latent features computed by a
network embedding algorithm called DeepWalk. Based on
these latent feature representations, we proposed a number
of ranking methods. Furthermore, we proposed two rank-
ing methods that are solely based on sentiment scores. Our
evaluation using #nowplaying tweets showed that the use
of latent features to represent users, tracks and hashtags
contributes to better ranking. The evaluation procedure dis-
tinguished two tasks of increasing complexity: i) ranking a
set of randomly picked tracks and ii) ranking a set of tracks
the target user has already listened to. We find that for the
first task, comparing the latent representations of users and
tracks (regardless of used hashtags or affective information)
performs best and this confirms our hypothesis that apply-
ing an embedding technique effectively captures the general
listening preferences of users. However, for the second, con-
text-aware ranking task, using solely affective information
extracted from hashtags leads to the best result. We consider
the second task is a more complex and, from a user-perspec-
tive, more personal ranking problem. Our findings suggest
that in this case, contextual, affective information is able to
better capture the user’s preference. Finally, an evaluation
of the different sentiment lexica showed that the differences
in performance of the individual lexica is rather moderate.
While Vader achieves the best results, we argue that com-
bining several dictionaries or implementing fallback meth-
ods results in a more robust approach.

Future work includes incorporating more sophisticated
sentiment detection approaches both regarding the underly-
ing dictionaries as well as the computation of the sentiment
scores. In a first step, we aim to further evaluate different
aggregation methods for tracks that are tagged with multi-
ple tags with divergent sentiment scores (e.g., #happysad).
Furthermore, we aim to find common characteristics of
users or tracks regarding their ranking performance (e.g., to
look into the performance of the proposed approach for
users that have a high variance in sentiment scores). Also,
we aim to experiment with probabilistic models for repre-
senting a user’s or track’s sentiment values (e.g., using
Gaussian Mixture Models [56]).

Modeling affective information in a multidimensional
model such as the valence-arousal space [78], [83] is worth
exploring. Also, we aim to extend the unsupervised senti-
ment-detection approach (based on sentiment dictionaries) to
a supervised learning approach that permits cross-lingual
sentiment detection [84]. Lastly, the computation of latent fea-
tures based on the proposed graph needs to be investigated in
more detail. Particularly, we aim to investigate the influence
and performance of different embedding strategies for the
computation of latent representations. Ultimately, we intend

the development and evaluation of real-world applications
for music recommendation and music-based emotion regula-
tion based on our findings.

ACKNOWLEDGMENTS

The computational results presented have been achieved (in
part) using the HPC infrastructure LEO of the University of
Innsbruck. The research of Chen, Tsai and Yang is sup-
ported by a grant from the Ministry of Science and Technol-
ogy, Taiwan, under project MOST 106-3114-E-002-007.

REFERENCES

[1]  T. Schafer, P. Sedlmeier, C. Stdtler, and D. Huron, “The psycho-
logical functions of music listening,” Frontiers Psychology, vol. 4,
no. 511, pp. 1-34, 2013.

[2] A.]. Lonsdale and A. C. North, “Why do we listen to music?
A uses and gratifications analysis,” Brit. |. Psychology, vol. 102,
pp- 108-134, 2011.

[3] A.Van Goethem and J. A.Sloboda, “The functions of music for affect
regulation,” Musicae Scientiae, vol. 15, no. 2, pp. 208228, 2011.

[4] M. E. Sachs, A. Damasio, and A. Habibi, “The pleasures of sad
music: A systematic review,” Frontiers Human Neurosci., vol. 9,
no. 404, pp. 1-12, 2015.

[5] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci,
A. Aydin, K.-H. Lke, and R. Schwaiger, “InCarMusic: Context-
aware music recommendations in a car,” in E-Commerce and Web
Technologies, C. Huemer and T. Setzer, Eds. Berlin, Germany:
Springer, 2011, pp. 89-100.

[6] B.Ferwerda and M. Sched], “Enhancing music recommender sys-
tems with personality information and emotional states: A
proposal,” in Proc. Conf. User Model. Adaptation Personalization,
2014, pp. 36-44.

[7] R. L. Rosa, D. Z. Rodrguez, and G. Bressan, “Music recom-
mendation system based on user’s sentiments extracted from
social networks,” IEEE Trans. Consum. Electron., vol. 61, no. 3,
pp- 359-367, Aug. 2015.

[8] D.Watson and R. Mandryk, “An in-situ study of real-life listening
context,” in Proc. Sound Music Comput. Conf., 2012, pp. 11-16.

[9]1 E. Zangerle, M. Pichl, W. Gassler, and G. Specht, “#nowplay-

ing music dataset: Extracting listening behavior from Twitter,”

in Proc. Int. Workshop Internet-Scale Multimedia Manage., 2014,

pp- 21-26.

M. Pichl, E. Zangerle, and G. Specht, “#nowplaying on #Spotify:

Leveraging Spotify information on Twitter for artist recommen-

dations,” in Proc. Workshop Current Trends Web Eng., 2015,

pp- 163-174.

D. Hauger, M. Schedl, A. Kosir, and M. Tkal¢i¢, “The million

musical tweets dataset: What can we learn from microblogs,” in

Proc. Int. Soc. Music Inf. Retrieval Conf., 2013, pp. 189-194.

M. Schedl, “The LFM-1b Dataset for music retrieval and recom-

mendation,” in Proc. ACM Int. Conf. Multimedia Retrieval, 2016,

pp- 103-110.

G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, “Context-

aware recommender systems,” Al Mag., vol. 32, no. 3, pp. 67-80,

2011.

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver,

“Multiverse recommendation: N-dimensional tensor factorization

for context-aware collaborative filtering,” in Proc. ACM Conf. Rec-

ommender Syst., 2010, pp. 79-86.

Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond

the user-item matrix: A survey of the state of the art and future

challenges,” ACM Comput. Survey, vol. 47, no. 1, pp. 3:1-3:45, 2014.

S. Rendle, “Factorization machines with 1ibFM,” ACM Trans.

Intell. Syst. Technol., vol. 3, no. 3, pp. 57:1-57:22, 2012.

T. V. Nguyen, A. Karatzoglou, and L. Baltrunas, “Gaussian pro-

cess factorization machines for context-aware recommendations,”

in Proc. ACM Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,

2014, pp. 63-72.

B. Pang and L. Lee, “Opinion mining and sentiment analysis,”

Found. Trends Inf. Retrieval, vol. 2, no. 1/2, pp. 1-135, 2008.

A. Neviarouskaya, H. Prendinger, and M. Ishizuka, “SentiFul:

A lexicon for sentiment analysis,” IEEE Trans. Affect. Comput.,

vol. 2, no. 1, pp. 22-36, Jan.-Mar. 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: Universitaetsbibliothek Innsbruck. Downloaded on May 27,2021 at 10:01:34 UTC from IEEE Xplore. Restrictions apply.



90

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2021

E. Kouloumpis, T. Wilson, and J. Moore, “Twitter sentiment anal-
ysis: The good the bad and the OMG!” in Proc. Int. AAAI Conf.
Weblogs Social Media, 2011, pp. 538-541.

P. Nakov, Z. Kozareva, A. Ritter, S. Rosenthal, and V. S. T. Wilson,
“SemEval-2013 task 2: Sentiment analysis in Twitter,” in Proc. 2nd
Joint Conf. Lexical Comput. Semantics, 2013.

A. Severyn and A. Moschitti, “Twitter sentiment analysis with
deep convolutional neural networks,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2015, pp. 959-962.

J. J. Deng, C. H. C. Leung, A. Milani, and L. Chen, “Emotional
states associated with music: Classification, prediction of changes,
and consideration in recommendation,” ACM Trans. Interactive
Intell. Syst., vol. 5, no. 1, pp. 4:1-4:36, 2015.

B.-J. Han, S. Rho, S. Jun, and E. Hwang, “Music emotion classifica-
tion and context-based music recommendation,” Multimedia Tools
Appl., vol. 47, no. 3, pp. 433-460, 2010.

M. Barthet, D. Marston, C. Baume, G. Fazekas, and M. B. Sandler,
“Design and evaluation of semantic mood models for music rec-
ommendation using editorial tags,” in Proc. Int. Soc. Music Inf.
Retrieval Conf., 2013, pp. 421-426.

C.-M. Chen, M.-F. Tsai, J.-Y. Liu, and Y.-H. Yang, “Using emo-
tional context from article for contextual music recommendation,”
in Proc. ACM Int. Conf. Multimedia, 2013, pp. 649-652.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 701-710.

A. Grover and J. Leskovec, “Node2Vec: Scalable feature learning
for networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855-864.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. Int. Conf.
World Wide Web, 2015, pp. 1067-1077.

F. N. Ribeiro, M. Aratjo, P. Gongalves, F. Benevenuto, and
M. A. Gongalves, “SentiBench - a benchmark comparison of state-
of-the-practice sentiment analysis methods,” EP] Data Sci., vol. 5,
no. 1, p. 23, 2016, doi: 10.1140/ epjds/s13688-016-0085-1.

P. Gongalves, M. Aradjo, F. Benevenuto, and M. Cha, “Comparing
and combining sentiment analysis methods,” in Proc. ACM Conf.
Onlgne Social Netw., 2013, pp. 27-38.

F. A. Nielsen, “A new ANEW: Evaluation of a word list for
sentiment analysis in microblogs,” in Proc. ESWC2011 Workshop
‘Making Sense Microposts”: Big Things Come Small Packages, 2011,
pp- 93-98.

M. Hu and B. Liu, “Mining and summarizing customer reviews,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2004, pp. 168-177.

M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas,
“Sentiment strength detection in short informal text,” J. Amer. Soc.
Inf. Sci. Technol., vol. 61, no. 12, pp. 2544-2558, 2010.

C. J. Hutto and E. Gilbert, “VADER: A parsimonious rule-based
model for sentiment analysis of social media text,” in Proc. Int.
Conf. Weblogs Social Media, 2014, pp. 216-225.

Twitter: Twitter Filter APL [Online]. Available: https://dev.
twitter.com/docs/api/1.1/post/statuses/ filter

H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. ACM Int. Conf. World Wide
Web, 2010, pp. 591-600.

K. Lerman and R. Ghosh, “Information contagion: An empiri-
cal study of the spread of news on Digg and Twitter social
networks,” in Proc. 4th Int. Conf. Weblogs Social Media, 2010,
pp- 90-97.

D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman,
“Influence and passivity in social media,” in Proc. 20th Int. Conf.
Companion World Wide Web, 2011, pp. 113-114.

L. Yang, T. Sun, M. Zhang, and Q. Mei, “We know what @you
#tag: Does the dual role affect hashtag adoption?” in Proc. ACM
Int. Conf. World Wide Web, 2012, pp. 261-270.

Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Proc. IEEE Int. Conf. Data Mining,
2008, pp. 263-272.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose, M. Scholz, and
Q. Yang, “One-class collaborative filtering,” in Proc. IEEE Int.
Conf. Multimedia Expo., 2008, pp. 502-511.

G. A. Miller, “The magical number seven, plus or minus two:
Some limits on our capacity for processing information,” Psycho-
logical Rev., vol. 63, no. 2, 1956, Art. no. 81.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571]

[58]
[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

D. Bollen, B. P. Knijnenburg, M. C. Willemsen, and M. Graus,
“Understanding choice overload in recommender systems,” in
Proc. 4th ACM Conf. Recommender Syst., 2010, pp. 63-70.

E. M. Voorhees et al., “The TREC-8 question answering track
report,” in Proc. 8th Text Retrieval Conf., 1999, pp. 77-82.

S. Srinivasan, S. Bhattacharya, and R. Chakraborty, “Segmenting
web-domains and hashtags using length specific models,” in Proc.
ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 1113-1122.

O. Tsur and A. Rappoport, “What’s in a hashtag?: Content based
prediction of the spread of ideas in microblogging communities,”
in Proc. ACM Int. Conf. Web Search Data Mining, 2012, pp. 643-652.
A. Mnih and G. Hinton, “A scalable hierarchical distributed lan-
guage model,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2008,
pp. 1081-1088.

L. Bottou, “Stochastic gradient learning in neural networks,” Proc.
Neuro-Numes, vol. 91, no. 8, 1991.

G. Adomavicius and Y. Kwon, “Improving aggregate recommen-
dation diversity using ranking-based techniques,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 5, pp. 896-911, May 2012.

S.-T. Park and D. M. Pennock, “Applying collaborative filtering
techniques to movie search for better ranking and browsing,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp- 550-559.

A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee,
J. A. Konstan, and J. Riedl, “Getting to know you: Learning
new user preferences in recommender systems,” in Proc. Int.
Conf. Intell. User Interfaces, 2002, pp. 127-134.

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme,
“MyMediaLite: A free recommender system library,” in Proc.
ACM Conf. Recommender Syst., 2011, pp. 305-308.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. Int. Conf.
World Wide Web, 2001, pp. 285-295.

J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of
design choices in neighborhood-based collaborative filtering algo-
rithms,” Inf. Retrieval, vol. 5, no. 4, pp. 287-310, 2002.

J.-C. Wang, Y.-H. Yang, H.-M. Wang, and S.-K. Jeng, “The acoustic
emotion Gaussians model for emotion-based music annotation
and retrieval,” in Proc. ACM Int. Conf. Multimedia, 2012, pp. 89-98.
J. Gross, “Emotion regulation: Conceptual and empirical
foundations,” in Handbook of Emotion Regulation, 2nd ed., J. Gross,
Ed. New York, NY, USA: The Guilford Press, 2007, pp. 1-19.

S. L. Koole, “The psychology of emotion regulation: An integra-
tive review,” Cognition Emotion, vol. 23, pp. 4-41, 2009.

M. Tamir, “The maturing field of emotion regulation,” Emotion
Rev., vol. 3, pp. 3-7, 2011.

D. J. Hargreaves and A. C. North, “The functions of music in
everyday life: Redefining the social in music psychology,” Psychol-
ogy Music, vol. 27, no. 1, pp. 71-83, 1999.

P. N. Juslin and P. Laukka, “Expression, perception, and induc-
tion of musical emotions: A review and a questionnaire study of
everyday listening,” . New Music Res., vol. 33, no. 3, pp. 217-238,
2004.

D. Boer and R. Fischer, “Towards a holistic model of functions of
music listening across cultures: A culturally decentred qualitative
approach,” Psychology Music, vol. 40, no. 2, pp. 179-200, 2010.

S. Saarikallio, S. Nieminen, and E. Brattico, “Affective reactions to
musical stimuli reflect emotional use of music in everyday life,”
Musicae Scientiae, vol. 17, no. 1, pp. 27-39, 2013.

S. Saarikallio, “Music in mood regulation: Initial scale devel-
opment,” Musicae Scientiae, vol. 12, pp. 291-309, 2008.

S. Saarikallio, “Music-related emotional self-regulation across
adulthood years,” Psychology Music, vol. 39, pp. 307-328, 2011.

M. Tamir, “Don’t worry, be happy? Neuroticism, trait-consistent
affect regulation and performance,” J. Personality Social Psychology,
vol. 89, no. 3, pp. 449461, 2005.

E. Bodner, I. Iancu, A. Gilboa, A. Sarel, A. Mazor, and D. Amir,
“Finding words for emotions: The reactions of patients with major
depressive disorder towards various musical excerpts,” Arts Psy-
chotherapy, vol. 34, no. 2, pp. 142-150, 2007.

M. Punkanen, T. Eerola, and J. Erkkila, “Biased emotional recogni-
tion in depression: Perception of emotions in music by depressed
patients,” ]. Affect. Disorders, vol. 130, no. 1/2, pp. 118-126, 2011.
P. Knees and M. Schedl, “Music retrieval and recommendation: A
tutorial overview,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2015, pp. 1133-1136.

Authorized licensed use limited to: Universitaetsbibliothek Innsbruck. Downloaded on May 27,2021 at 10:01:34 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1140/epjds/s13688-016-0085-1
https://dev.twitter.com/docs/api/1.1/post/statuses/filter
https://dev.twitter.com/docs/api/1.1/post/statuses/filter

ZANGERLE ET AL.: LEVERAGING AFFECTIVE HASHTAGS FOR RANKING MUSIC RECOMMENDATIONS 91

[70] Y.-H. Yang and Y.-C. Teng, “Quantitative study of music listening
behavior in a smartphone context,” ACM Trans. Interactive Intell.
Syst., vol. 5, no. 3, 2015, Art. no. 14.

X. Wang, D. Rosenblum, and Y. Wang, “Context-aware mobile
music recommendation for daily activities,” in Proc. ACM Int.
Conf. Multimedia, 2012, pp. 99-108.

M. Sched], G. Breitschopf, and B. Ionescu, “Mobile music genius:
Reggae at the beach, metal on a Friday night?” in Proc. ACM Int.
Conf. Multimedia Retrieval, 2014, pp. 507-510.

R. A. Calvo and S. D'Mello, “Affect detection: An interdisciplinary
review of models, methods, and their applications,” IEEE Trans.
Affect. Comput., vol. 1, no. 1, pp. 18-37, Jan.-Jun. 2010.

Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of
affect recognition methods: Audio, visual, and spontaneous
expressions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1,
pp- 39-58, Jan. 2009.

Y.-P. Lin, Y.-H. Yang, and T.-P. Jung, “Fusion of electroencephalo-
gram dynamics and musical contents for estimating emotional
responses in music listening,” Frontiers Neurosci., vol. 8, no. 94,
pp. 1-14,2014.

Y.-H. Yang and J.-Y. Liu, “Quantitative study of music listening
behavior in a social and affective context,” IEEE Trans. Multimedia,
vol. 15, no. 6, pp. 1304-1315, Oct. 2013.

J.-Y. Liu, S.-Y. Liu, and Y.-H. Yang, “LJ2M dataset: Toward better
understanding of music listening behavior and user mood,” in
Proc. IEEE Int. Conf. Multimedia Expo, 2014, pp. 1-6.

Y.-H. Yang and H.-H. Chen, “Machine recognition of music emo-
tion: A review,” ACM Trans. Intell. Syst. Technol., vol. 3, no. 3,
2012, Art. no. 40.

I. Andjelkovic, D. Parra, and J. O'Donovan, “Moodplay: Interactive
mood-based music discovery and recommendation,” in Proc. ACM
Conf. User Model. Adaptation Personalization, 2016, pp. 275-279.

Y. Shi, M. Larson, and A. Hanjalic, “Mining mood-specific movie
similarity with matrix factorization for context-aware recommen-
dation,” in Proc. Workshop Context-Aware Movie Recommendation,
2010, pp. 34-40.

Y. Zheng, B. Mobasher, and R. D. Burke, “The role of emotions in
context-aware recommendation,” in Proc. RecSys Workshop Human
Decision Making Recommender Syst., 2013, pp. 21-28.

A. K. M. Tkalcic¢ and J. Tasic¢, “Affective recommender systems: The
role of emotions in recommender systems,” in Proc. RecSys Workshop
Human Decision Making Recommender Syst., 2011, pp. 9-13.

J. Wang, L. C. Yu, K. R. Lai, and X. Zhang, “Community-based
weighted graph model for valence-arousal prediction of affective
words,” IEEE/ACM Trans. Audio Speech Language Process., vol. 24,
no. 11, pp. 1957-1968, Nov. 2016.

C.R. Argueta, F. H. Calderon, and Y.-S. Chen, “Multilingual emo-
tion classifier using unsupervised pattern extraction from micro-
blog data,” Intell. Data Anal., vol. 20, no. 6, pp. 1477-1502, 2016.

[71]

[72]

(73]

[74]1

[75]

[76]

(771

(78]

[791

[80]

[81]

[82]

[83]

[84]

Eva Zangerle received the master's degree in
computer science and the PhD degree in recom-
mender systems for collaborative social media
platforms, both from the University of Innsbruck.
She is a postdoctoral researcher with the Univer-
sity of Innsbruck at the research group for Data-
bases and Information Systems (Department of
Computer Science). Her main research interests
include within the fields of social media analysis,
recommender systems, and information retrieval.
Over the last years, she has combined these
three fields of research and investigated music recommender systems
based on data retrieved from social media platforms aiming to exploit
new sources of information for recommender systems. She was
awarded a postdoctoral fellowship for overseas researchers from the
Japan Society for the Promotion of Science allowing her to make a
short-term research stay at the Ritsumeikan University in Kyoto.

Chih-Ming Chen is working toward the PhD
degree in the Taiwan International Graduate Pro-
gram of the Academia Sinica and the Department
of Social Networks and Human-Centered Com-
puting, National Chengchi University. He has
also been a research intern at KKBOX, a leading
music streaming company in East Asia, and is in
charge of developing the music recommenda-
tions toolkit. Moreover, he has participated and
won many public data competitions such as KDD
Cup, so he is experienced in both predictive
modeling and data analysis. His research interests span the territories of
machine learning and recommender system.

Ming-Feng Tsai received the PhD degree from
the National Taiwan University, in 2009. He is
currently an associate professor with the Depart-
ment of Computer Science, National Chengchi
University. In 2006, he was at Microsoft Research
Asia as a visiting student with the Web Search &
Mining Group, and was awarded by the research
institution the “Best Intern of the Year.” After
receiving his PhD degree, he worked with the
National University of Singapore as a research
fellow, participating in a research project related
to machine translation. In 2010, sponsored by Taiwan National Science
Council, he joined the University of lllinois at Urbana-Champaign as a
visiting scientist, working on a project associated with advanced Web
search and mining. His research interests span the areas of information
retrieval, machine learning, natural language processing, and recom-
mender systems. In 2014, he served as financial chair of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR).

Yi-Hsuan Yang (M'11-SM’17) received the PhD
degree in communication engineering from the
National Taiwan University, in 2010. He is an
associate research fellow with Academia Sinica.
He is also a Joint-Appointment associate profes-
sor with the National Cheng Kung University,
Taiwan. His research interests include music
information retrieval, affective computing, multi-
media, and machine learning. He was a recipient
of the 2011 IEEE Signal Processing Society
Young Author Best Paper Award, the 2012 ACM
Multimedia Grand Challenge First Prize, the 2014 Ta-You Wu Memorial
Research Award of the Ministry of Science and Technology, Taiwan, and
the 2015 Best Conference Paper Award of the IEEE Multimedia Commu-
nications Technical Committee. He is an author of the book Music Emo-
tion Recognition (CRC Press 2011). In 2014, he served as a technical
program co-chair of the International Society for Music Information
Retrieval Conference (ISMIR). In 2016, he started his term as an associ-
ate editor of the IEEE Transactions on Affective Computing and the IEEE
Transactions on Multimedia. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Universitaetsbibliothek Innsbruck. Downloaded on May 27,2021 at 10:01:34 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


