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The comprehensive evaluation of the performance of a recommender system is a complex endeavor: many facets need
to be considered in coniguring an adequate and efective evaluation setting. Such facets include, for instance, deining
the speciic goals of the evaluation, choosing an evaluation method, underlying data, and suitable evaluation metrics. In
this paper, we consolidate and systematically organize this dispersed knowledge on recommender systems evaluation. We
introduce the łFramework for EValuating Recommender systems” (FEVR) that we derive from the discourse on recommender
systems evaluation. In FEVR, we categorize the evaluation space of recommender systems evaluation. We postulate that
the comprehensive evaluation of a recommender system frequently requires considering multiple facets and perspectives
in the evaluation. The FEVR framework provides a structured foundation to adopt adequate evaluation conigurations that
encompass this required multi-facettedness and provides the basis to advance in the ield. We outline and discuss the challenges
of a comprehensive evaluation of recommender systems, and provide an outlook on what we need to embrace and do to move
forward as a research community.

CCS Concepts: · Information systems → Recommender systems; Evaluation of retrieval results; · Human-centered

computing → HCI design and evaluation methods.

Additional Key Words and Phrases: survey, Framework for EValuating Recommender systems, FEVR

1 INTRODUCTION

Recommender systems (RS) have become important tools in people’s everyday life, as they are eicient means to
ind and discover relevant, useful, and interesting items such as music tracks [41], movies [29, 50], or persons
for social matching [44]. A RS elicits the interests and preferences of individual users (e.g., by explicit user
input or via implicit information inferred from the user’s interactions with the system) and tailors content
and recommendations to these interests and needs [219]. As for most systems, the evaluation of RS demands
attention in each and every phase throughout the system life cycleÐin design and development as well as for
continuous improvement while in operation. Delivering quality is a necessary factor for a system to be successful
in practice [8]. The evaluation may assess the core performance of a system in its very sense or may embrace
the entire context in which the system is used [23, 101, 115, 184, 189]. Research on RS typically diferentiates
system-centric and user-centric evaluation, where the former refers to the evaluation of algorithmic aspects (e.g.,
the predictive accuracy of recommendation algorithms). The latter targets the users’ perspective and evaluates
how users perceive its quality or the user experience when interacting with the RS. In other words, the evaluation
of a RS may cover system- or user-centric aspects concerning the system’s context of use; a comprehensive
evaluation essentially needs to address both as, for instance, provided recommendations that are adequate in
terms of system-centric measuresÐfor instance, the predictive accuracy of recommendation algorithmsÐdo not
necessarily meet a user’s expectations [138, 157].
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As we will demonstrate in this paper, there is an extensive number of dimensions that need to be considered
when assessing the performance of a RS [94]. Besides the various facets of system conigurations and the multitude
of tasks that users aim to address with a RS (for instance, inding good items to getting a recommendation for
a sequence of items) [101], there are multiple stakeholders involved who may have varying perspectives on a
RS’ goals [18]. There is a rich evaluation design space (e.g., evaluation setup, data collection, employed metrics)
to draw from and we have to specify evaluation conigurations that meet the respective evaluation objectives.
Such objectives may relate to, for instance, improving rating prediction accuracy, increasing user satisfaction
and experience, or increasing click-through rates and revenue. As a consequence, the comprehensive evaluation
of a RS is a very complex task. As the ultimate goal is that a RS functions well as a whole in various contexts
(e.g., for diferent user groups, for diferent kinds of tasks and purposes), the evaluation needs to assess the
various dimensions that make up a RS’ performance. What is more, frequently, we might need to shed light on
a single dimension from various angles. For instance, Kamehkhosh and Jannach [124] could reproduceÐand,
thus, conirmÐthe results of their oline evaluation in an online evaluation on users’ perceived quality of
recommendations. Matt et al. [155] evaluated several recommender algorithms for diversity efects from various
angles; in taking these diferent perspectives, they found that the level of recommendation diversity perceived by
users does not always relect the factual diversity.
While the knowledge about system evaluationÐand RS evaluation in particularÐis continuously growing,

empirical evidence, insights, and lessons learned are scattered across papers and research communities. To ill this
research gap, this paper’s main objective and major contribution is to consolidate and systematically organize this
dispersed knowledge on RS evaluation. Therefore, we introduce the łFramework for EValuating Recommender
systems” (FEVR) that we derive from the discourse on RS evaluation. We categorize the evaluation design spaceÐ
i.e., the space that spans all required design decisions when conducting comprehensive RS evaluations. With
FEVR, we provide a systematic overview of the essential facets of RS evaluation and their application. As FEVR
encompasses a wide variety of facets to be considered in an evaluation coniguration, it can accommodate
comprehensive evaluations that address the various multi-faceted dimensions that make up a RS’ performance.
Besides guiding novices to RS research and evaluation, FEVR is a profound source for orientation for scientists and
practitioners concerned with designing, implementing, or assessing RS. In addition, FEVR provides a structured
basis for systematic RS evaluation that the RS research community can build on. We expect FEVR to serve as a
guide to facilitate and foster the repeatability and reproducibility of RS research for researchers and practitioners,
from novices to experts. Yet, comprehensive evaluation comes with challenges. Thus, to date, RS literature seems
to concentrate on accuracy-driven oline evaluations and does not relect the existing knowledge about what a
comprehensive evaluation requires [39, 109, 111]. We outline and discuss the challenges of comprehensive RS
evaluation, and provide an outlook on what we need to embrace and do to move forward as a research community.

2 CONCEPTUAL BASIS

In the following, we briely describe the foundations of recommender systems (Section 2.1) and their evaluation
(Section 2.2).

2.1 Recommender Systems

Recommender systems aim to help users to deal with information and choice overload [9] by providing them
with recommendations for items that might be interesting to the user [178, 181]. In the following, we give a brief
overview of the foundational recommendation approaches: collaborative iltering, content-based RS, and more
recent advances.
The most dominant approach for computing recommendations is collaborative iltering [192, 193], which is

based on the collective behavior of a system’s users. The underlying assumption is that users who had similar
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preferences in the past will also have similar preferences in the future. Hence, recommendations are typically
computed based on the users’ past interactions with the items in the system [32, 67, 101, 192, 193]. These
interactions are recorded in a user-item rating matrix, where the users’ ratings for items are stored. Such ratings
may either refer to explicit ratings where users assign scores on a scale of, e.g., 1 to 5, to items, or implicit ratings.
Fig. 1 shows an example of such a user-item matrix. Note that user-item matrices are highly sparse, as users only
rate a small fraction of items available in the system. The algorithmic task of a RS is that of matrix completionÐi.e.,
predicting the missing ratings in the matrix. This prediction of ratings can be performed using various methods:
from traditional matrix completion methods, over neighborhood-based methods to matrix factorization, machine
or deep learning-based approaches. For further information on these approaches, we refer the interested reader
to the existing literature on these topics (e.g., [67, 140, 161, 192, 193, 206, 226]).

Items
�1 �2 �3 �4 �5

U
se
rs

�1 0 3 3
�2 2
�3 2 4
�4 3 1
�5 5 1 1

Fig. 1. Exemplary user-item matrix� with 0ś5 star ratings for items �1ś�5 by users �1ś�5.

For user-based collaborative iltering RS that leverage the neighborhood of users in the two-dimensional space
of the matrix, the most similar users to the current users are detected (the so-called neighborhood) by comparing
their interactions with the system. Analogously, in item-based (item-item) collaborative iltering [192], the most
similar items to the ones the user has previously rated highly are recommended, where the similarities are again
computed based on the user-item matrix. Subsequently, items the user has not interacted with are sorted by their
predicted ratings and the top-� items are then recommended to the user.
For collaborative iltering tasks, Matrix Factorization (MF) [139] aims to ind latent factors in a joint, lower-

dimensional space that explain user ratings for a given item. Speciically, latent representations for users and
items are computed such that user-item interactions can be modeled as the inner product of user and item
representations. This is often performed by applying optimization approaches to decompose the user-item
matrix into two lower-dimensional matrices (e.g., stochastic gradient descent or alternating least squares), mostly
relying on a regularized model to avoid overitting (e.g., [83, 105]). Furthermore, learning-to-rank approaches
model the computation of recommendations as a ranking task and apply machine learning to model the ranking
of recommendations. In principle, we diferentiate three types of learning-to-rank approaches: (i) point-wise
(compute a score for each item for ranking; used in traditional CF approaches), (ii) list-wise (compute an optimal
order of a given list), and (iii) pair-wise (consider pairs of items to approximate the optimal ordering). Bayesian
Personalized Ranking is a popular example for learning-to-rank models; it is a generic, model-agnostic learning
algorithm for predicting a personalized ranking [176] based on training pairs that incorporate positive and
negative feedback.

In contrast, the central idea of content-based approaches is to recommend items that share characteristics with
items that the user has previously liked (for instance, items that have a similar description or genre) [4, 160, 168].
Based on these characteristics of the user’s previously liked items, a user model (often referred to as user proile) is
built that represents the user’s preferences. For the computation of recommendations, the user model is matched
against item characteristics, and the most similar, and hence, relevant items are subsequently recommended
to the user. Hybrid RS aim to combine collaborative and content-based iltering to leverage the advantages of
both [33].
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Similar to many other ields, a multitude of machine and deep learning models have been adapted for use
in recommender systems. These include, for instance, deep neural networks for collaborative iltering, where
the user-item interactions are modeled by a neural network [99], deep factorization machines [96], or (varia-
tional) autoencoders [148]. Convolutional Neural Networks (CNN) are mostly used for learning features from
(multimedia) sources. For instance, learning representations from audio signals and incorporating them in a
CF approach [212], or extracting and modeling latent features from user reviews and items [229]. Recurrent
Neural Networks (RNN) allow modeling sequences and, hence, are applied for sequential recommendation
tasks such as playlist generation or next-item recommendation [102, 175]. The use of reinforcement learning
models for recommendation tasks is often performed by formulating the task as a multi-armed bandit problem
(contextual bandits) [146, 156, 228]. Here, the bandit sequentially provides recommendations to users by also
incorporating their contexts while continuously updating and optimizing the recommendation model based
on user feedback. Furthermore, graph convolutional networks (GCN) model users, items, and potential side
information in a graph. Based on this information, latent representations for nodes are learned by aggregating
feature information from local neighbors (e.g., [98, 167]). This allows using these representations for candidate
generation by nearest-neighbor lookups [222] or performing link-prediction tasks [25]. For a survey on deep
learning for recommender systems, please refer to Zhang et al. [226]. In the context of evaluating deep learning
recommender systems, it is noteworthy that evaluation metrics (cf. Section 3.4.4) are frequently used as loss
functions (i.e., during the training phase).
Besides traditional recommendation approaches, there are several important extensions and specialized

recommender systems that allow to deal with further input data or adapt to more speciic use cases. These
include, amongst others, context-aware recommender systems [3], where further contextual factors that describe
e.g., the user’s situation (for instance, time, location, weather) are leveraged to compute recommendations that
are suitable for a given user in a given context. Sequential (or sequence-aware) recommender systems [174]
analyze the sequence of user interactions to compute sequences of recommendations (e.g., recommending the
next song to listen to, given a sequence of songs the user has just listened to). Conversational recommender
systems provide more sophisticated interaction paradigms for preference elicitation, item presentation, or user
feedback [113]. All of these approaches go beyond traditional recommender systems and user interactions and,
hence, also require more complex evaluation methods and setups. We refer the interested reader to the respective
survey articles [3, 113, 174] for details on such evaluations.

2.2 Evaluation of Recommender Systems

An evaluation is a set of research methods and associated methodologies with the distinctive purpose of assessing
quality [205]. In their book, Jannach et al. [117] state that evaluations are łmethods for choosing the best technique
based on the speciics of the application domain, identifying inluential success factors behind diferent techniques,
or comparing several techniques based on an optimality criterion” and that they are all required for efective
evaluation research.
One of the early works on evaluating RS by Herlocker et al. [101] focuses on the evaluation of collaborative

iltering RS. The authors stress that evaluating RS is inherently diicult as (i) algorithms may perform diferently
on diferent datasets, (ii) evaluation goals may difer, and (iii) choosing the right metrics to compare individual
approaches is a complex task. Gunawardana et al. [94] provide a general overview of evaluation methods for RS.

Beel et al. [21, 23] investigated evaluation approaches in the ield of research paper recommender systems. They
ind that 21% of all approaches do not include an evaluation and that 69% are evaluated using an oline evaluation.
Furthermore, they also looked into baseline usage and the datasets utilized for the evaluation. The authors note
that the wide usage of no or weak baselines, as well as the usage of very diferent datasets, makes it diicult to
compare the performance of the individual approaches, which in turn severely hinders advancing research in the
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ield. Dehghani Champiri et al. [57] performed a systematic literature review on evaluation methods and metrics
for context-aware scholarly recommender systems. In a meta-analysis, they reviewed 67 studies and ind that
oline evaluations are the most popular experiment type.
Comparing a RS’ performance results to existing approaches and to competitive, strong baselines is also an

important aspect for assessing and contextualizing the performance of the system. In this regard, Rendle et al.
[177] show that several widely-used baseline approaches, when carefully set up and tuned, outperform many
recently published algorithms on the MovieLens 10M benchmark [97]. Along the same lines, Ferrari Dacrema
et al. [77, 78] investigated the performance of deep learning recommendation approaches published at major
venues between 2015 and 2018, particularly, when compared to well-tuned, established, non-neural baseline
methods. They found that the majority of approaches were compared to poorly-tuned, weak baselines and that
only one of twelve neural methods was consistently outperforming well-tuned learning-based techniques.

Complimentary to existing works on RS evaluation, we consolidate and systematically organize this knowledge
in the proposed Framework for EValuating Recommender systems (FEVR).

3 RECOMMENDER SYSTEMS EVALUATION: A REVIEW

Fig. 2 presents an overview of the components and general factors to be considered for recommender systems
evaluation. Along this framework, we present the conceptual basis and paradigms used in recommender system
evaluations. We term the framework FEVR: Framework for EValuating Recommender systems and emphasize that
not necessarily all of these components and factors might be required to conduct a comprehensive evaluation
of RS (this particularly holds for the proposed evaluation aspects). We consider this framework a collection
and overview of potentially relevant components; it is meant to provide researchers and practitioners with an
overview of the choices to be made when setting up the evaluation design and procedure.

Evaluation Design Space

Experiment Type

Offline Evaluation

User Study

Online Evaluation

Evaluation Objectives

Overall Goal

Stakeholders

Properties

Evaluation Aspects

Data CollectionTypes of Data

Data Quality and Biases Evaluation Metrics

Evaluation System

Evaluation Principles

Hypothesis / Research Question

Control Variables

Generalization Power

Reliability

Fig. 2. Framework for EValuating Recommender systems (FEVR): evaluation objectives and the design space (along the

orthogonal dimensions of evaluation principles, experiment type, and evaluation aspects).

The framework contains two main components: the evaluation objectives and the evaluation design space. When
designing RS evaluations, deciding upon the objectives of the evaluation (What should be evaluated? How can

we measure this?) has to be the irst step because this directly inluences the design decisions for the evaluation
setup. The second component, the evaluation design space contains basic building blocks for the actual setup of
the evaluation, which are assembled and conigured based on the overall goal, the stakeholders involved, and the
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properties of the RS that need to be evaluated. In the evaluation design space, we distinguish three design blocks.
The so-called evaluation principles describe the guiding principles of the evaluationÐfrom the deinition of the
hypothesis underlying the evaluation to the generalizability of the conducted evaluation. These principles are
tightly connected and inluenced by the deined objectives because, for instance, the hypothesis to be evaluated
needs to relect the main objective of the evaluation (e.g., investigating whether algorithm A performs better than
algorithm B). Given the objectives and principles, the experiment type can be considered a broad categorization
of the type of experiment conducted to satisfy the objectives and principles (oline evaluation, user study, or
online evaluation). Evaluation aspects can be considered a more ine-grained speciication of the evaluation setup
and, based on the deined requirements, control the detailed evaluation setup. They can be considered a set of
conigurations and decisions that do not necessarily all have to be considered for a RS evaluation; they should
provide guidance for setting up and conducting comprehensive evaluations. We consider the choices of evaluation
principles and experiment type rather high-level, whereas evaluation aspects cover more detailed and speciic
decisions regarding the evaluation setup.
In the following, we detail each of the framework’s components and discuss their role in the activities of

evaluating recommender systems.

3.1 Evaluation Objectives

At the heart of any evaluation, activity is the comparison of the objectives (target performance) to the observed
results (actual performance) [170]. ThusÐwhether explicitly or implicitly statedÐ, evaluation is always based on
one or more evaluation objectives. Evaluation objectives for evaluating a RS may take many forms. Essentially,
objectives are shaped by the overall goal of academic and/or industry partners and the purpose of the system [109].
In this context, Herlocker et al. [101] underline that any RS evaluation has to be goal-driven. Schröder et al. [195]
emphasize that setting the goal of an evaluation has to be executed with suicient care and it should be the irst
step of any evaluation to łdeine its goal as precisely as possible”.
The underlying premise of any RS evaluationÐin academia and industryÐis that a RS is supposed to create

value in practice [115] and have an impact in the real world [111]Ðin the long run, or even in the short run.
Thus, overall goals that are typically investigated by academia, as well as industry, include, among others, a RS’
contribution to increasing the user satisfaction [181], increase an e-commerce website’s revenue [94], increase
the number of items sold [181], sell more diverse items [181], help users understand the item space [109, 116],
and engage users to increase their visit duration on a website, or return to the website [218]. Although several
goals and purposes of RS are addressed in RS research and evaluation, it is remarkable that this variety of user
tasks and RS purposes is not widely relected in literature; instead, the main interpretation of the purpose of a RS
seems to be łhelp users ind relevant items,” while other recommendation purposes are largely underexplored in
the literature [109].
Concerning setting an evaluation goal, Schröder et al. [195] provide a vivid example of a precise evaluation

goal: łFind the recommendation algorithm and parameterization that leads to the highest overall turnover on a
speciic e-commerce website, if four product recommendations are displayed as a vertical list below the currently
displayed product.” Crook et al. [54] consider prediction, ranking, and classiication as the most common tasks
when viewed from the system’s perspective. Considering the end consumers’ perspective, Herlocker et al. [101]
discuss various end consumer tasks that a RS might be able to support (e.g., inding good items, inding all good
items, recommending a sequence, discovering new items). Such tasks essentially describe the end consumers’
overall goals that a RS might be evaluated for. A RS may, thus, be evaluated for their ability to ind good items,
ind all good items, recommend a sequence, or discover new items. When describing pitfalls and lessons learned
from their evaluation activities, Crook et al. [54] emphasize the importance of choosing an overall evaluation
goal that truly relects business goals.
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In general, evaluation objectives are shaped by the perspective that is taken in terms of the recommender’s
stakeholders. Beyond the end consumers, there are typically multiple stakeholders involved in and afected by
recommender systems [1] with varying goals and potentially conlicting interests [18], which may manifest
in diferent evaluation objectives. Currently, academic RS research tends to take the perspective of the end
consumer [110], whereas research in industry is naturally built around the platform or system provider’s
perspective [225]. The item providers are a relatively new concern in RS research (e.g., [71, 79, 89]). To date,
RS research that takes multiple stakeholders into account is scarce [1, 18, 62]. Table 1 provides an overview of
evaluation papers that take diferent stakeholders’ perspectives.

Stakeholder Examples

Consumer [82, 129, 132, 134, 172, 173]
Consumer Groups [76]
Platform Provider [21, 109, 112]
Item Provider [179]
Multiple Stakeholders [1, 18, 35]

Table 1. Overview of papers on the evaluation of RS considering diferent stakeholders’ perspectives.

While evaluating a recommender’s overall goals (e.g., for an increase in a website’s revenue) can be helpful,
Gunawardana et al. [94] point out that it can be most useful to evaluate how recommenders perform in terms
of speciic properties. This allows focusing on improving speciic properties where they fall short (e.g., usage
prediction accuracy, sales diversity, conidence in the recommendation, privacy level). The challenge is to identify
the properties that are indeed relevant for a recommender’s performance and show that it afects the users’
experience [94], or the interests of other stakeholders. As diferent domains, applications, and consumer tasks
have diferent needs, it is essential to decide on the most important properties to evaluate for the concrete RS at
hand [94]. As already pointed out, Schröder et al. [195] emphasize the importance to deine the evaluation goal as
precisely as possible. Accordingly, specifying the relevant properties will provide the necessary ine granularity
in deining the evaluation objective. As there might be trade-ofs between sets of properties, it is often diicult to
anticipate how these trade-ofs afect the overall performance of the system [94]; this has to be considered in
inding an appropriate evaluation design.
The evaluation objectivesÐincluding the overall goal, the stakeholder(s) being addressed, and the properties

in the loopÐare central to any evaluation efort and are, thus, the main drivers for coniguring the evaluation
design. We emphasize that poorly deined objectives will inevitably result in a poor evaluation.

3.2 Evaluation Design Space: Evaluation Principles

Closely related to the previously described evaluation objectives is a set of guiding principles for conducting
evaluations [94]. These principles are pivotal in the process of designing and conducting RS evaluations because
they lay the foundation of the evaluation procedure and provide the foundation of the setup. Hence, they should
be considered and ixed early on in the process of evaluating a RS to shape the method and setup of the evaluation.

The irst evaluation principle concerns hypotheses (or research questions) that capture the evaluation objectives.
Depending on the overall goal and whether a problem can be clearly deined, the evaluation’s overall goal may be
translated to one or more a-priori formulated hypotheses that are grounded on prior knowledge (e.g., observations
or theory) [217], or to one ore more exploratory-driven (broader) research questions.

Conirmatory evaluation involves testing one or more a-priori formulated hypotheses. Hence, a central starting
point for conirmatory evaluation is the formulation of one or multiple hypotheses regarding the outcome of
the evaluation. Deining a concise hypothesis is a highly important step as it allows to precisely deine the
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evaluation’s goalÐthe more precise the hypothesis, the clearer the evaluation setup as the hypothesis (in line with
the evaluation objectives) shapes the evaluation design.1 An example of a hypothesis for RS evaluation in the
ield of content-based video recommendations is łOur recommendation algorithm based on visual features leads
to a higher recommendation accuracy in comparison with conventional genre-based recommender systems” [59].
Another example is Knijnenburg andWillemsen [131]’s hypothesis regarding preference elicitation (PE): łNovices
have a higher satisfaction and perceive the system as more useful when they use the case-based PE method
(compared to the attribute-based PE method), while experts have a higher satisfaction and perceive the system as
more useful when they use the attribute-based PE method (compared to the case-based PE method).” Jannach and
Bauer [111] claim that algorithmic RS research frequently comes without (appropriate) hypothesis development;
they call for more theory-guided research with clear pointers to underlying theory (e.g., from psychology) that
support the hypotheses.2

Yet, sometimes the evaluation objectives address a problem where little is known about the phenomenon. In
such situations, the problem cannot be clearly deined at this state of research and the evaluation might, thus,
be of exploratory nature (e.g., to get a better understanding of a problem or explore patterns). In such cases,
it is not possible or suitable to formulate hypotheses. Instead, the evaluation’s overall goal can be addressed
by formulating research questions. For instance, Liang and Willemsen [149] seek to understand the efects of
defaults in music genre exploration for which they formulate three research questions. Concerning author gender
distribution in book recommendations, and Ekstrand and Kluver [71] explore how individual users’ preference
proiles propagate into the recommendations that they receive.
In hypothesis testing, all variables in the RS ecosystem that are not evaluated should be held ixed. Also

in exploratory evaluation, the researcher exercises some control over the research conditions to explore the
phenomenon of interest. The second evaluation principle, control variables (or short: controls) minimize the
confounding variables and we eliminate potential external inluences on the evaluation result [94, 216]. This
allows a targeted evaluation and comparison of diferent algorithms and conigurations by ensuring that only
variables that are evaluated can be changed and that diferences in the evaluation results are not due to some
further, external factors. Going back to the previous example hypothesis regarding preference elicitation, the
authors tested the hypothesis by utilizing the PE method, user expertise, and commitment as independent
variables and measured satisfaction with the system, perceived usefulness, understandability, and satisfaction
with the chosen measures as dependent variables, while ixing all other variables. Jannach et al. [117] refer to
these controlled test conditions as the łinternal validity” [37] of experiments.

The third important principle is the generalization power of evaluations, the extent to which the conclusions of
the evaluation are generalizable beyond the current evaluation setup and experiments. The generalization power
is tightly connected to the evaluation setup as e.g., varying the experimental setup, conducting experiments with
diferent datasets, or extending the experiments to cover further application domains, user groups or stakeholders
typically increases the generalization power of the evaluation [190]. Jannach et al. [117] refer to this as łexternal
validity” [37], namely the łextent to which results are generalizable to other user groups or situations [169]”.

Reliability [117] is the fourth cornerstone of research evaluations as it demands evaluations to be consistent
and free of errors (in both data and measurements). Particularly the consistency of multiple evaluation runs is
crucial as this demonstrates the highly desirable repeatability of experiments, i.e., the ability to observe similar
results of experiments conducted successively under the same (documented) settings and conigurations, allowing

1For a discourse on the issues related to hypothesis-testing if a ield is prone to produce łpseudo-empirical hypotheses” see Smedslund [199].
Smedslund [199] particularly emphasizes the problem that there is a prevailing belief (i.e., the current paradigm centered on the notion of
probability) that łhypotheses that make sense are true, and hypotheses that do not make sense are false.” For a discussion on the role of
conirmation bias in making progress in research see Greenwald et al. [92] or Wagenmakers et al. [217].
2As an example, Jannach and Bauer [111] state that many works build on underlying assumptions such as łhigher diversity is better” without
providing any pointers to underlying research that would support such an assumption.
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consistent results describing the RS’ performance. Tightly connected to repeatability is reproducibility, which
refers to the ability łto duplicate the results of a prior study using the same materials as were used by the
original investigator. That is, a second researcher might use the same raw data to build the same analysis iles and
implement the same statistical analysis in an attempt to yield the same results... Reproducibility is a minimum
necessary condition for a inding to be believable and informative” [91]. Reproducible results require either
access to the source code or a detailed description of the algorithm such that it can be re-implemented as well as
having access to the dataset that was originally used. In this context, it is important to diferentiate between
reproducibility and replicability, which can be deined as the ability łto duplicate the results of a prior study if the
same procedures are followed but new data are collected” [91]. In a nutshell, the three key concepts here can be
deined as follows: reproducibility (diferent team, diferent experimental setup), repeatability (same team, same
experimental setup), and replicability (diferent team, same experimental setup) as stated by the Association for
Computing Machinery’s badging initiative3.
The ACM Conference on Recommender Systems (RecSys) has introduced a speciic reproducibility track in

2020, which calls for łalgorithmic papers that repeat and analyze prior work”4. Notably, this track calls for
replicability as well as reproducibility papers. To further stress the importance of reproducibility, the best paper
award of RecSys 2019 was awarded to Ferrari Dacrema et al. [78], in which the authors aim to reproduce the
results of 18 papers from the ield of deep learning recommender algorithms. In an extended version of that study,
Ferrari Dacrema et al. [77] ind that only twelve out of the 26 evaluations had a reproducible setup, corresponding
to a total of 46% of all systems. Here, the authors considered a paper to have a reproducible setup if (i) a working
version of the source code is available or the code only has to be modiied in minimal ways to work correctly, and
(ii) at least one dataset used in the original paper is available (this also includes the train-test splits to be available
or at least be reconstructible based on the description in the paper). The importance of documenting train/test
splits (among other factors) is also highlighted by Cañamares et al. [36], who show that diferent splitting methods
and factors can lead to diverse evaluation results. On a similar note, Bellogín and Said [24] make the case for
accountability and transparency in RS research and argue that only if the conducted research and evaluation
is reproducible, it is also accountable. They discuss the requirements for accountable RS research and derive a
framework that allows for reproducible and, hence, accountable RS evaluation.

3.3 Evaluation Design Space: Experiment Type

In RS research, we distinguish three experiment types: oline evaluations, user studies, and online evaluations [20,
22, 81, 94, 101]. These diferent types describe the general experimental setup; Gunawardana and Shani [93] also
refer to these types as łevaluation protocols”. The characteristics of these types include, among others, aspects of
user involvement, utilized and obtainable data, or the type of insight that can be gained when using a speciic
experiment type. Please note that experiments of more than one type may be necessary to obtain a full picture
of the performance of a RS. Oline evaluations are often the irst step in conducting evaluations and there is a
łlogical evolution from oline evaluations, through user studies to online analyses” [81]. Fig. 3 shows an overview
of the three experiment types, emphasizing that they represent a contrasting spectrum of experiments, covering
diverse and diferent aspects of RS performance, where each type comprises a wide variety of evaluation setups
and conigurations.
Table 2 features an overview and comparison of the three established experiment types utilized in the RS

research community. In the following, we further elaborate on their characteristics, goals, usage scenarios, and
diferences. Oline evaluations aim to compare diferent recommendation algorithms and settings; they do not
require any user interaction and may be considered system-centric. In contrast, both, user studies and online

3https://www.acm.org/publications/policies/artifact-review-badging, also following Hong [103].
4Call for Papers (Reproducibility Track) for RecSys 2022: https://recsys.acm.org/recsys22/call/#content-tab-1-1-tab
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Fig. 3. Spectrum of experiment types.

Type Description

Oline Method: simulation of user behavior based on past interactions
Task: deined by the researcher, purely algorithmic
Repeatability: evaluation of an arbitrary number of experiments (e.g., algorithmic settings,

models) possible at low cost
Scale: large dataset, large number of users
Insights: quantitative, narrow (focused on the predictive performance of algorithms)

User Study Method: user observation in live or laboratory setting
Task: deined by the researcher, carried out by the user
Repeatability: expensive (recruitment of users)
Scale: small cohort of users
Insights: quantitative and/or qualitative (live user data, logging of user actions, eye tracking,

questionnaires before/during/after task)
Online Method: real-world user observation, online ield experiment

Task: self-selected by the user, carried out by the user
Repeatability: expensive (requires full system and users)
Scale: size of the cohort of users depending on evaluation system and user base
Insights: quantitative and/or qualitative (live user data, logging of user actions, questionnaires

before/during/after exposure to the system)

Table 2. Overview of experiment types.

evaluations, involve users and can be considered user-centric. Still, user involvement in evaluation does not
necessarily target or capture the user experience, as discussed in Knijnenburg and Willemsen [132]. Also, for
instance, Celma and Herrera [40] refer to leave-�-out methods, a typical oline evaluation method, as user-centric;
while at the same time, they state that those evaluations measure accuracy and neglect (user-perceived) eiciency
of recommendations.
Orthogonal to the distinction between online and oline experiments and user studies, Said et al. [189]

and Knijnenburg and Willemsen [132] distinguish system- and user-centric evaluations and emphasize the
diferent objectives of the adopted evaluation methods: system-centric evaluation methods evaluate the system,
while user-centric evaluation methods target the user experience when interacting with the system.
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3.3.1 Ofline Evaluation. In research literature, the most frequently used experiment type for RS evaluation are
so-called łoline evaluations”.5 An oline evaluation uses a pre-collected dataset that contains users’ explicit
feedback on items (e.g., ratings of items) or implicit feedback on items (e.g., the items purchased, viewed, or
consumed) [94]. User behavior is then mimicked and simulated based on this historical data, no real users
(and their interactions with the system) are involved in the actual experiments. For the experiments, parts of
the rating information are removed (at random) from the given dataset’s user-item matrix (so-called leave-�-
out evaluation [52]) and, subsequently, the recommender algorithms are analyzed regarding their ability to
recommend (i.e., predict) the missing information [20, 22]Ðassessing whether the given recommender is apt
to simulate user behavior to predict ratings that are relected in the previously hidden data. Typically, oline
evaluations are used to compare two or more RS algorithms (oline A/B testing [88]). Oline evaluations are
meant to identify promising recommendation approaches by using metrics such as algorithmic accuracy and
precision [20, 22, 132], and evaluating the predictive power of the approaches in regards to user preferences
and opinions [81]Ðthus, the scope of evaluation objectives that can be evaluated with an oline evaluation is
rather narrow [94] and focused on algorithmic tasks. It is, however, easy to repeat oline experiments as each
evaluation run can be repeated any number of times using diferent recommender setups, algorithm parameters,
datasets, users, etc., and also, at an arbitrary scale regarding the input dataset and the number of users evaluated.
Temporal aspects of data can be critical in the design of such an evaluation. Burke [34] suggests a łtemporal

leave-one-out approach”, where the timestamps are considered in selecting which part of the data is used for
training the model and which part for testing. Gunawardana et al. [94] emphasize that selecting data based on
timestamps allows for simulating what a recommender’s predictions would have been if it had been running
at the time when the data was available. Starting with no available prior data for computing predictions and
stepping through user and interaction data in temporal order may be ideal in terms of simulating the system’s
behavior along the timeline; however, for large data sets, such an approach is computationally expensive [94].
While oline evaluations are widely used to obtain insights into the predictive performance of diferent

recommendation algorithms, there are also disadvantages to oline evaluations. Given the described setup that
relies on historic data, oline evaluation does not involve (current) real users. There is no interaction of users
with the given (to be evaluated) RS algorithm in an actual system and the performance of the algorithm in a
real-world scenario can not be assessed. Hence, the generalizability (external validity) of the indings obtained by
oline experiments is limited, and frequently questioned [183]. For instance, a recent study [123] showed that
oline experiments on historical data for a destination recommender system did show higher predictive accuracy
than a subsequent user study. In another study [183], oline experiments underestimated the precision results of
online evaluations.

Counterfactual learning methods [6, 207] overcome one of the key problems in oline evaluation; namely, that
the dataset was logged from a real-world platform where a particular RS was active (i.e., logged policy) while the
oline evaluation has the objective to evaluate another RS algorithm (i.e., target policy). With counterfactual
learning methods, one can address the question of how well a new RS algorithm would have performed if it
had been used instead of the policy that logged the historical data. This counterfactual approach also reduces
the efect of selection biases (i.e., biases introduced into the data through the actions selected by the logging
policy) [122].

3.3.2 User Study. A user study is conducted by recruiting a (small) set of human test subjects who perform
several pre-deined tasks that require them to interact with the RS [94]. The goal here is to observe user interaction
with the system and to distill real-time feedback on the system’s performance and the user’s perceived value

5According to Jannach and Bauer [111], more than 92% of the 117 RS papers published at AAAI and IJCAI in 2018 and 2019 relied exclusively
on oline experiments. At ACM RecSys 2018 and 2019, three of four papers only used oline evaluations. For the years 2006ś2011, more than
two-thirds of papers relied on oline experiments Jannach et al. [118].

ACM Comput. Surv.



12 • E. Zangerle and C. Bauer

of the system. This observation can either be conducted in a laboratory or live setting. Thereby, the user study
may be conducted in a way to compare two or more systems in, for instance, an experimental setup (controlled
experiment6); a user study may also focus on exploring a particular phenomenon without comparing speciic RS
approaches (exploratory study) [173]. The subject’s interaction behavior with the system is recorded and based
on these records, various quantitative measures may be computed (e.g., time to complete a task, click-through
rate, recommendation acceptance). In addition, the setting of a user study allows for asking subjects closed or
open-ended questions during, before, and after the task potentially also providing qualitative feedback [94].
Further, user studies allow for integrating various forms of measurements such as eye-tracking or think-aloud-
testing [163]. Hence, user studies allow for the most comprehensive feedback compared to the other experiment
types, enabling answers to the widest set of questions. Notably, user studies measure user experience at the time
of recommendation.

It is important to note that user studies may lead to costs [22, 57]Ðboth in user time and inancial costs, often
limiting the number of users being involved in the study or the number of diferent system dimensions and
conigurations that can be investigated and evaluated [81]. This also involves recruiting a set of participants that
are willing to participate in the experiment. These participants should be representative of the actual users of the
system and have access to a running recommender system. Furthermore, users who know that they are part of a
study often tend to behave diferently (called łHawthorne efect” [144]). Generally, user studies need extensive
preparation and planning as repeating is expensive. Besides, a wide range of sensors and detailed observations of
user behavior need to be installed to make sure to not miss any vital information during the study as a potential
rerun of the experiment may be expensive. These factors can be regarded as causes of the low adaption of user
studies in the ield of RS research [20, 22].

3.3.3 Online Evaluation. In online evaluations, the RS is deployed in a real-world, live setting [94]. In contrast
to user studies, users are not presented with speciic tasks, but use the system to perform self-selected real-
world tasks (also referred to as łlive user studies” [81]). Hence, online evaluations allow for the most realistic
evaluation scenario as users are self-motivated and use the system in the most natural and realistic manner [135,
136]. Accordingly, online evaluations provide feedback on the system’s performance for users with a real
information need [94]. Similar to user studies, user behavior is logged and recorded and subsequently used
to distill performance metrics such as recommendation accuracy. Typically, this also involves measuring the
acceptance of recommendations using click-through rates (CTR).
While the real-world setting is an advantage of online evaluations [135, 136], this very setting limits this

experiment type to collecting user behavior on the platform (e.g., purchases, clicks, dwell, time). When inferring
user satisfaction from user behavior [20, 22], care has to be taken because user behavior (e.g., consumption
activity) may also have diferent or additional causes such as integrated nudges [121], closing an app interpreted
as negative feedback for an item [31], or biases due to interruptions or distractions [160].

We note that online evaluations require access to a RS and its implementation. Typically, online evaluations are
carried out in the form of A/B testing [135] to compare the adapted system/algorithm to the original system. In
so-called online ield experiments [47], a small number of users are randomly assigned and exposed to diferent
alternative RS conigurations (instantiations) without their knowledge, and the users’ interactions with the
systems are recorded and analyzed. These instantiations may include diferent recommendation algorithms, and
algorithm conigurations, but also diferent interaction, presentation, or preference elicitation strategies.
Furthermore, online evaluations are performed for recommender systems that require a high amount of

interaction with the user or where speciically the interaction with the user needs to be evaluated (e.g., critiquing
systems [180], conversational recommender systems [48, 113], or novel interfaces and interaction strategies [30,

6Although an experimental setup may compare two or more variants of a RS, the term A/B testing is typically not used in the context of user
studies.
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130]) that can not be simulated are often evaluated in online ield experiments. Traditionally, this includes A/B
testing [135].

3.4 Evaluation Design Space: Evaluation Aspects

In this section, we provide an overview of individual aspects that are to be considered in the evaluation design space.
Many of these aspects are interwoven, and their characteristics might have interdependencies or may be mutually
exclusive. For instance, synthetic datasets comeÐby deinitionÐwithout any user involvement. Experiments with
random assignment of user groups to treatments (e.g., diferent RS algorithms) may be implemented in user
studies (in randomized control trials or laboratory experiments) or online evaluation (in online ield experiments)
alike. Furthermore, trade-ofs between RS performance indicators have been observed; for instance, a trade-of
between accuracy and diversity is frequently reported [125, 143], and diversity may not necessarily be perceived
by users [104, 133] or diferently across users [143]. Moreover, situational factors may inluence user experience
due to varying user needs or preferences [61, 182].
Consequently, frameworks are an efective means to organize this complexity. For instance, Knijnenburg

et al. [133]’s framework for the user-centric evaluation of recommender systems models this complexity for studies
addressing the user experience.

In the following, we describe the individual aspects of the evaluation design space.

3.4.1 Types of Data. The essential basis for the evaluation of recommender systems is data. The characteristics
of data can be manifold and may depend on the type of data used for computing the actual recommendations,
among other factors. In the following, we give a brief overview of the diferent characteristics of data that may
be used when evaluating RS.

Implicit and Explicit Rating Data. User ratings are usually collected by user behavior observations, which
may, for instance, include records on the items that a user consumed, purchased, rated, viewed, or explored (e.g.,
pre-listening of songs), where the source may be an existing dataset or one that is collected for the respective
study. When relying on the observation of user behavior when interacting with a RS, we typically distinguish
between explicit and implicit feedback [105, 120]. Explicit feedback is provided directly by the user and the data
unequivocally captures the user’s perception of an item. Platforms that employ recommender systems frequently
integrate mechanisms that allow users to explicitly express their interests in or preference for a speciic item via
rating scales (e.g., 5-star rating scale, likes, thumbs-up, or thumbs-down). The rating scales used for providing
explicit feedback usually allow for expressing both, positive and negative preferences (e.g., a scale from łI like it a
lot” to łI do not like it”).

Implicit feedback, in contrast, is inferred from a user’s observable and measurable behavior when interacting
with a RS (e.g., purchases, clicks, dwell time). When relying on implicit feedback, evaluations presume that, for
instance, a consumed item is a quality choice, while all other items are considered irrelevant [15]. Hence, implicit
feedback is typically positive only (e.g., purchase, click), while the absence of such information does not imply
that the user does not like an item (e.g., a user not having listened to a track does not imply that the user does not
like the track). Some scenarios also allow for opportunities for negative implicit feedback such as, for instance,
the skipping of songs. Furthermore, implicit feedback can be used to infer relative preferences (for example, if a
user watched one movie ten times whereas other movies typically only once or play counts of songs for a music
RS). Thus, implicit feedback may be mapped to a degree of preferences, thereby ranging on a continuous scale
to its positive extremity [120]. When interpreting implicit feedback, the assumption is that speciic behavior is
an indication of quality, regardless of whether the behavior may have other causes; thus, for example, closing a
music streaming app may be mistakenly interpreted as a skip (i.e., negative feedback) [31] or the behavior is
inluenced by interruptions or distractions [56].
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Dimension Explicit Feedback Implicit Feedback

Accuracy High Low
Abundance Low High
Expressivity of user preference Positive and negative Positive
Measurement reference Absolute Relative

Table 3. Characteristics of explicit and implicit feedback (adapted from Jawaheer et al. [120]).

Most of the research in RS has focused on either explicit or implicit data [120], while comparably few have
combined these two heterogeneous types of feedback (e.g., [147, 151, 152]). Table 3 summarizes the characteristics
of explicit and implicit feedback. Explicit feedback provides higher accuracy than implicit feedback inferred
from behavior based on assumptions (e.g., the assumption that users only click on items they are interested in).
Typically, when users navigate through a platform that employs a RS, an abundance of data about user behavior is
logged. In contrast, users are reluctant to explicitly rate items [100, 128], which leads to comparably little explicit
feedback data. Note that explicit feedback tends to concentrate on either side of the rating scale because users are
more likely to express their preferences if they feel strongly in favor or against an item [12].

Although explicit and implicit feedback are heterogeneous types of feedback [120], research investigating the
relations between implicit and explicit feedback for preference elicitation has shown that using implicit feedback
is a viable alternative [165]. Still, implicit measures may reveal aspects that explicit measures do not [211]Ð
particularly when user self-reports are not consistent with the actual user behavior. Integrating both, observation
of actual user behavior and users’ self-reports on intentions and perceptions, may deliver rich insights for which
each approach in isolation would be insuicient.

Note that many evaluation designs presume that a consumed item is a viable option also in other contexts (e.g.,
another time, location, or activity) and consider item consumption as a generally valid positive implicit feedback.
What the user indeed experiences, however, remains unclear. The validity of the feedback for other contexts
depends on the design of the feedback mechanism. For instance, an item rated with ive stars may be the user’s
lifetime favorite, but still not suitable for a certain occasion (e.g., a ballad for a workout, or a horror movie when
watching with kids).

User, Item Information. RS algorithms typically heavily rely on rating data for the computation of recommen-
dations, where the computations are mostly based solely on the user-item matrix. However, these approaches
have been shown to sufer from sparsity and also, the cold-start problem, where recommendations for new items
or users cannot be computed accurately as there is not enough information on the user or item, respectively.
Therefore, metadata on the user, items, or context can also be incorporated to further enhance recommendations
(this information is often referred to as łside information”) [75, 162]. For instance, keywords describing the
item may be extracted from e.g., reviews on the item [10] or social ties between users can be extracted from
relationships in social networks [154, 210]. Furthermore, when working toward business-oriented goals and
metrics (cf. Section 3.4.4), data such as revenue information or click-through rates also have to be logged and
analyzed [112]. In addition, context information is useful when users are expected to have diferent preferences
in diferent contexts (e.g., watching a movie in a cinema or at home [187]).

Qualitative and Quantitative Data. Besides collecting behavioral user data (e.g., implicit feedback logged during
user interactions with the system), evaluations may also rely on qualitative or quantitative evidence where data
is gathered directly from the user. Quantitative data collection methods are highly-structured instrumentsÐsuch
as scales, tests, surveys, or questionnairesÐ, which are typically standardized (e.g., same questions, same scales).
This standardization facilitates validity and comparability across studies. Quantitative evidence allows for a
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deductive mode of analysis using statistical methods; answers may be compared and interrelated and allow for
generalization to the population. Qualitative evidence is frequently deployed to understand the sample studied.
Commonly used data collection methods include interviews, focus groups, and participant observations, where
data is collected in the form of notes, videos, audio recordings, images, or text documents [80].

Natural and Synthetic Data. Herlocker et al. [101] distinguish between natural and synthetic datasets. While
natural datasets capture user interactions with a RS or are directly derived from those, synthetic datasets are
artiicially created (e.g., [58, 223]). Natural datasets contain (historical) data that may capture previous interactions
of users with a RS (e.g., user behavior such as clicks or likes), or data that may be associated with those (e.g., data
that relects users attitudes and feelings while interacting with a RS), or are derived from user interactions (e.g.,
turnover attributed to recommendations). In cases where a natural real-world dataset that would be suiciently
suitable for developing, training, and evaluating a RS is not available, a synthesized dataset may be used. In
such cases, a synthesized dataset would allow for particularly modeling speciic critical aspects that should be
evaluated. For instance, a synthesized dataset may be created to relect out-of-the-norm behavior. Herlocker
et al. [101] stress that a synthetic dataset should only be used in the early stages of developing a RS and that
synthesized datasets cannot simulate and represent real user behavior. Yet, not only user-behavior-related data can
be synthesized. For instance, Jannach and Adomavicius [110] use ictitious proit values to investigate proitability
aspects of RS.

3.4.2 Data Collection. Data collection methods may be distinguished based on their focus on considering
contemporary and historical events, where methods may rely on past events (e.g., existing datasets, data retrieved
from social media) or investigate contemporary events (e.g., observations, laboratory experiments) [221]. In the
following, we give an overview of data collection aspects.

User Involvement. Evaluation methods may be distinguished with respect to user involvement. While oline
studies do not require user interaction with a RS, user-centric evaluations need users to be involved, which is
typically more expensive in terms of time and money [94, 189]Ðwhich is especially true for online evaluations
with large user samples (cf. Section 3.3.

Randomized control trials are often considered the gold standard in behavioral science and related ields. In
terms of RS evaluation, this means that users are recruited for the trial and randomly allocated to the RS to be
evaluated (i.e., intervention) or to a standard RS (i.e., baseline) as the control. This procedure is also referred to as
A/B-testing (e.g., [54, 135, 136]). Randomized group assignment minimizes selection bias, keeping the participant
groups that encounter an intervention or the baseline as similar as possible. Presuming that the environment
can control for all the remaining variables (i.e., keeping the variables constant), the diferent groups allow for
comparing the proposed system to the baselines. For instance, randomized control trials that are grounded on
prior knowledge (e.g., observations or theory) [217] and where the factors measured (and the instruments used
for measuring these factors) are carefully selected may help determine whether an intervention was efective [42];
explaining presumed causal links in real-world interventions is often too complex for experimental methods.

While randomized control trials are conducted in laboratory settings, experiments in ield settings are typically
referred to as łsocial experiments”. Thereby, the term social experiment covers research in a ield setting where
investigators treat whole groups of people in diferent ways [221]. In online environments, this is referred to
as online ield experiment [47]. In ield settings, the investigator’s control is only partly possible. Field settings
have the advantage that outcomes are observed in a natural, real-world environment rather than in an artiicial
laboratory environmentÐin the ield, people are expected to behave naturally. Overall, though, ield experiments
are always less controlled than laboratory experiments, and ield experiments are more diicult to replicate [150].
For RS evaluation, an online ield experiment [47] very often requires collaboration with a RS provider from
industry, who is commercially oriented and may not be willing to engage in risky interventions that may cause
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losing users and/or revenues. However, e.g., for the 2017 RecSys Challenge7, the best job recommendation
approaches (determined by oline experiments) were also rolled out in XING’s productive systems for online
ield experiments. Besides collaborating with industry, a number of online ield experiments have been carried
out using research systems (e.g., MovieLens) (e.g., [47, 227]). However, when carrying out a study with a research
system, one also has to build a user community for it. Generally, this is often too great an investment just to
carry out an experiment. This is why many researchers have argued for funding shared research infrastructure
(in both Europe and the USA) including a system with actual users [137].

It is important to note that it is rarely feasible to repeat studies with user involvement for a substantially
diferent set of algorithms and settings. System-centric (oline) evaluations are, in contrast, easily repeatable
with varying algorithms [94, 101, 189]. However, oline evaluations have several weaknesses. For instance, data
sparsity limits the coverage of items that can be evaluated. Also, the evaluation does not capture any explanations
why a particular system or recommendation is preferred by a user (e.g., recommendation quality, aesthetics of
the interface) [101]. Knijnenburg et al. [132, 133] propose a theoretical framework for user-centric evaluations
that describes how users’ personal interpretation of a system’s critical features inluences their experience and
interaction with a system. In addition, Herlocker et al. [101] describe various dimensions that may be used to
further diferentiate user study evaluations. Examples for user-centric evaluations can, for instance, be found in
the following sources: [51, 63, 70, 188].
Overall, while system-centric methods without user involvement typically aim to evaluate the RS from an

algorithmic perspective (e.g., in terms of accuracy of predictions), user involvement opens up possibilities for
evaluating user experience [189].

User Feedback Elicitation. At the core of many recommender systems are user preference models. Building
such models requires eliciting feedback from users, for whichÐat runtimeÐdata is typically collected while users
interact with the RS. For evaluation purposes, we can leverage a wider variety of methods for data collection.
For instance, besides considering interaction logs, observation [127] may be used to elicit users’ behavior. An
alternative method is to ask users for their behavior or intentions in a particular scenario. Such self-reports may
be directed to reports on what they have done in the past or what users intend to do in a certain context. However,
self-reports may not be consistent with user behavior [43, 141, 211] because the link between an individual’s
attitude and behavior is generally not very strong [7]. Furthermore, the process of reporting on one’s behavior
may itself induce relection and actual change of behavior, which is known as the question-behavior efect [201].
It is, thus, good practice to combine self-report data with other information or to apply adjustment methods
because such an assessment considering several perspectives is more likely to provide an accurate picture [11].
For the elicitation of feedback on user experience, Pu et al. [172] propose an evaluation framework, called

ResQue (Recommender systems’ Quality of user experience) that aims to evaluate a comprehensive set of
features of a RS: the system’s usability, usefulness, interaction qualities, inluence of these qualities on users’
behavioral intentions, aspects inluencing the adoption, etc.. ResQue provides speciic questionnaire items and
is, thus, considered highly operational. Knijnenburg et al. [133]’s framework for the user-centric evaluation
of recommender systems takes a more abstract approach. It describes the structural relationships between the
higher-level concepts without tying the concepts to speciic questionnaire items. Therefore, it provides the
lexibility to use and adapt the framework for various RS purposes and contextual settings and allows researchers
to deine and operationalize a set of speciic, lower-level constructs. Both frameworks (i.e., Knijnenburg et al.
[133], Pu et al. [172]) may be integrated in user studies and online evaluations alike.

Existing Datasets. One advantage of relying on existing datasets is that (oline) evaluations can be conducted
early in a project. In comparison to soliciting and evaluating contemporary events, it is frequently łeasier” and

7http://2017.recsyschallenge.com/
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less expensive in terms of money and time to rely on historical data [94]. Also, by utilizing popular datasets
(e.g., the MovieLens dataset [97]), results can be compared with similar research. However, such an evaluation
is restricted to the past. For instance, the goal of a leave-�-out analysis [32] is to analyze to which extent
recommender algorithms can reconstruct past user interactions. Hence, such an evaluation can only serve as a
baseline evaluation measure because it only considers items that a user has already used in the past; assuming
that unused items would not be used even if they were actually recommended [94]. Additional items that users
might still consider useful are not considered in the evaluation because ratings for these items are not contained
in the dataset [224]. This is also stressed by Gunawardana et al. [94] by the following scenario: łFor example, a
user may not have used an item because she was unaware of its existence, but after the recommendation exposed
that item the user can decide to select it. In this case, the number of false positives is overestimated.”
Another risk is that the dataset chosen might not be (suiciently) representativeÐthe more realistic and

representative the dataset is for real user behavior, the more reliable the results of the oline experiments are [94].
In fact, the applicability of the indings gained in an evaluation based on a historic dataset is highly impacted by
the łquality, volume and closeness of the evaluation dataset to the data which would be collected by the intended
recommender system” [81].
Table 4 lists datasets widely used for evaluating recommender systems and their main characteristics such

as the domain, size, rating type, and examples of papers that have utilized the dataset in the evaluation of their
system. There are diferent MovieLens datasets, difering in the number of ratings contained (from 100K ratings in
the ML100K dataset to 20M ratings in the ML20M dataset; we list ML1M and ML20M in the table). Alternatively,
the yearly conducted RecSys-Challenge8 also provides datasets from a yearly changing application domain and
task (including job, music, or accommodation (hotel) recommendation).

Dataset Domain Size

MovieLens20M9 [97] Movie ratings 20,000,263 ratings; range [0.5,5]
MovieLens1M10 [97] Movie ratings 1,000,209 ratings; range [1,5]
BookCrossing11 [231] Book ratings 1,157,112 ratings; range [1,10]
Yelp12 Business ratings 8,021,122 ratings; range [0,5]
MovieTweetings13 [64] Movie ratings 871,272 ratings; range [0,10]

Table 4. Widely used datasets for evaluating RS.

3.4.3 Data uality and Biases. An important factor for RS evaluation is the quality of the data underlying the
evaluations. This also includes potential biases that may be contained in the data used for the evaluation. Such
biases may occur in the distributions of users, items, or ratings that are selected to be part of the evaluation
dataset. As Gunawardana et al. [94] note, a typical example of a bias that is introduced when assembling the
evaluation dataset is excluding users or items with low rate counts from the dataset. Careful curation of datasets
by e.g., using random sampling methods for limiting the size of the dataset to reduce the experimentation time is
crucial to avoid such biases. Another aspect that may inluence data biases is the collection method [94], where
users do not provide feedback that is evenly distributed among items as, for instance, users tend to rate items that

8http://www.recsyschallenge.com/
9available for download at https://grouplens.org/datasets/movielens/
10available for download at https://grouplens.org/datasets/movielens/
11available for download at http://www2.informatik.uni-freiburg.de/~cziegler/BX/
12available for download at https://www.yelp.com/dataset
13available for download at https://github.com/sidooms/MovieTweetings
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they particularly like or dislike. However, methods such as resampling or reweighting may be used for correcting
such biases [203, 204].
Adomavicius and Zhang [5] investigated the characteristics of rating data and their impact on the overall

recommendation performance. The characteristics they used for describing rating datasets are (i) overall rating
density (i.e., the degree to which the user-item matrix is illed), (ii) rating frequency distribution (i.e., how ratings
are distributed among items; rating data often exhibits a long-tail distribution [13, 164]), and (iii) the variance of
rating values. In a set of experiments, the authors ind that the recommendation performance is highly impacted
by the structural characteristics of the dataset, where rating density and variance exhibit the highest impact.

3.4.4 Evaluation Metrics. There is an extensive number of facets of RS that may be considered when assessing
the performance of a recommendation algorithm [93, 94]. Consequently, also the evaluation of RS relies on a
diverse set of metrics, which we briely summarize in the following. The presented metrics can be utilized for
diferent experiment types, however, we note that due to the dominance of oline experiments, most of the
presented metrics stem from oline settings.

In their early work on RS evaluation, Herlocker et al. [101] diferentiate metrics for quantifying predictive accu-
racy, classiication accuracy, rank accuracy, and prediction-rating correlation. Along the same lines, Gunawardana
and Shani [93] investigate accuracy evaluation metrics and distinguish metrics based on the underlying task
(rating prediction, recommending good items, optimizing utility, recommending ixed recommendation lists).
Said et al. [189] classify the available metrics into classiication metrics, predictive metrics, coverage metrics, con-
idence metrics, and learning rate metrics. In contrast, Avazpour et al. [16] provide a more detailed classiication,
distinguishing 15 classes of evaluation dimensions; these range, for instance, from correctness to coverage, utility,
robustness, and novelty. Gunawardana et al. [94] distinguish prediction accuracy (rating prediction accuracy,
usage prediction, ranking measures), coverage, novelty, serendipity, diversity, and conidence14. Chen and Liu
[45] review evaluation metrics from four diferent perspectives (or rather, disciplines): machine learning (e.g.,
mean absolute error), information retrieval (e.g., recall or precision), human-computer interaction (e.g., diversity,
trust, or novelty), and software engineering (e.g., robustness or scalability).

In the following, we discuss the most widely used categories of evaluation metrics. Table 5 gives an overview of
these metrics, which we classify along the lines of previous classiications. For an extensive overview of evaluation
metrics in the context of recommender systems, we refer to [45, 87, 93, 94, 101, 166, 195]. Several works [185, 209]
have shown that the metrics implemented in diferent libraries for RS evaluation (Section 3.4.5) sometimes
use the same name while measuring diferent things, which leads to diferent results given the same input.
Similarly, Bellogín and Said [24] report that papers present diferent variations of metrics (e.g., normalized vs
non-normalized; computed over the entire dataset or on user-basis and then averaged); and sometimes the details
of the evaluation protocol are not reported in papers [24, 36]. Tamm et al. [209] conclude that the more complex
a metric is, the more room there is for diferent interpretations of the metric, leading to diferent variations of
metric implementations. As a result, this might lead to misinterpretations of results within an evaluation [209],
and limits the comparability across evaluations [24, 36, 185, 209]. In line with previous works [24, 36], we urge
for a more detailed description of evaluation protocols as this will strengthen reproducibility and improve
accountability [24].

Fundamentally, we emphasize that it is important to evaluate a RS with a suite of metrics because a one-metric
evaluation willÐin most casesÐbe one-sided and cannot characterize the broad performance of a RS. When
optimizing a RS for one metric, it is crucial to also evaluate whether this optimization sacriices performance
elsewhere in the process [87, 101]. For instance, it is doubtful whether a RS algorithm optimized for prediction
accuracy while sacriicing performance in terms of diversity, novelty, or coverage is overall desirable. Similarly,

14Gunawardana et al. [94] list further aspects that need to be evaluated, such as trust and risk, which are typically assessed via questionnaires.
We do not cover these aspects here and kindly refer the interested reader to the original manuscript.

ACM Comput. Surv.



Evaluating Recommender Systems: Survey and Framework • 19

a RS that performs equally across various user groups but for all groups with similarly low accuracy and low
diversity will not likely reach a good user experience for any user. It is, thus, crucial to measureÐand reportÐa
set of complementary metrics. In many cases, it will be key to ind a good balance across metrics.

Category Metrics References

Prediction accuracy
Mean absolute error (MAE) [101, 197]
(Root) Mean squared error ((R)MSE) [101, 197]

Usage prediction
Recall, precision, F-score [49, 213]
Receiver operating characteristic curve (ROC) [208]
Area under ROC curve (AUC) [17]

Ranking
Normalized discounted cumulative gain (NDCG) [119]
Mean reciprocal rank (MRR) [215]

Novelty
Item novelty [38]
Global long-tail novelty [40, 125]

Diversity Intra-list diversity [231]

Coverage
Item coverage [87, 101]
User space coverage [87, 94]
Gini index [94]

Serendipity
Unexpectedness [101]
Serendipity [125, 159]

Fairness across users
Value unfairness [220]
Absolute unfairness [220]
Over/underestimation of fairness [220]

Fairness across items
Pairwise fairness [26]
Disparate treatment ratio (DTR) [198]
Equal expected exposure [60]
Equity of amortized attention [27]
Disparate impact ratio (DIR) [198]
Viable-Λ test [191]

Business-oriented
Click-through rate (CTR) [55, 86, 90]
Adoption and conversion rate [55, 90]
Sales and revenue [46, 145]

Articles providing an overview of metrics: [45, 87, 93, 94, 101, 166, 195].

Table 5. Overview of evaluation metrics.

Prediction accuracy refers to the extent to which the RS can predict user ratings [94, 101]. These include error
metrics that quantify the error of the rating prediction performed by the RS (i.e., the diference between the
predicted rating and the actual rating in a leave-�-out setting). The most widely used prediction accuracy metrics
are mean absolute error and root mean squared error.

Usage predictionmetrics can be seen as classiication metrics that capture the rate of correct recommendationsÐ
in a setting where each recommendation can be classiied as relevant or non-relevant [93, 94, 101]. This involves
binarizing ratings such as, e.g., on a rating scale of 1ś5 considering ratings of 1ś3 as non-relevant and ratings
of 4 and 5 as relevant. The most popular usage prediction metrics are recall, precision, and the F-score, which
combines recall and precision. Precision is the fraction of recommended items that are also relevant. In contrast,
recall measures the fraction of relevant items that are indeed recommended. Often, this includes restricting
relevant items to the � most relevant items, where the system’s ability to identify the � most suitable items for a
user is captured as opposed to evaluating all recommendations (often referred to as recall@� or precision@� ,
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respectively) [101]. Alternatively, the receiver operating characteristic curve can also be used to measure usage
prediction, where the true positive rate is plotted against the false positive rate for various recommendation list
lengths � . These curves can also be aggregated into a single score by computing the area under the ROC curve
(AUC).

Ranking metrics are used to quantify the quality of the ranking of recommendation candidates [93, 166].
Relevant recommendations that are ranked higher are scored higher, whereas relevant documents that are ranked
lower are provided a discounted score. Typical ranking metrics include normalized discounted cumulative gain
(NDCG) [119], or mean reciprocal rank (MRR) [215].

Diversity refers to the dissimilarity of the items recommended [38, 125, 143, 214], where low similarity values
mean high diversity. Diversity is often measured by computing the intra-list diversity [200, 231] and thereby,
aggregating the pairwise similarity of all items on the recommendation list. Here, similarity can be computed,
e.g., by Jaccard or cosine similarity [125].

Novelty metrics aim at measuring to which extent recommended items are novel [38]. Item novelty [107, 230]
refers to the fraction of recommended items that are indeed new to the user, whereas global long-tail novelty
measures the global novelty of itemsÐi.e. if an item is known by few users and hence, is in the long tail of the
item popularity distribution [32, 40].

Serendipity describes how surprising recommendations are to a user and hence, is tightly related to novelty [125,
159]. However, as Gunawardana et al. [94] note, recommending a movie staring an actor that the user has liked
in the past might be novel, but not necessarily surprising to the user. The so-called unexpectedness measure
compares the recommendations produced by a serendipitous recommender to the recommendations computed
by a baseline [159]. Building on the unexpectedness measure, serendipity can be measured by the fraction of
relevant and unexpected recommendations in the list [125] or the unexpectedness measure [2].
Coverage metrics describe the extent to which items are actually recommended [4, 87]. This includes catalog

coverage (i.e., the fraction of all available items that can be recommended; often referred to as item space
coverage) [189], user space coverage [94] (i.e., the fraction of items that are recommended to a user; often also
referred to as prediction coverage [87]), or measuring the distribution of items chosen by users (e.g., by using
the Gini index or Shannon entropy) [94]. Coverage metrics are also used to measure fairness because coverage
captures the share of items or users that are served by the RS.

Fairness metrics concern both, fairness across users and across items. In both cases, fairness may be captured
at the level of the individual or at group level. Individual fairness captures fairness (or unfairness) at the level
of individual subjects [27] and implies that similar subjects (hence, similar users or similar items) are treated
similarly [65]. Group fairness deines fairness on a group level and requires that salient subject groups (e.g.,
demographic groups) should be treated comparably [66]; in other words, group fairness is deined as the collective
treatment received by all members of a group [27]. A major goal of group fairness is that protected attributesÐfor
instance, demographic traits such as age, gender, or ethnicityÐdo not inluence recommendation outcomes due
to data bias or model inaccuracies and biases [27, 196].

Fairness across users is typically addressed at the group level. One way to address group fairness from the user
perspective is to disaggregate the user-oriented metrics to measure and compare to which extent user groups are
provided with lower-quality recommendations (e.g, [69, 73, 74, 108, 142, 158, 196]). Yao and Huang [220] propose
three (un-)fairness metrics: value unfairness measures, whether groups of users receive constantly lower or
higher predicted ratings compared to their true preference; absolute unfairness measures the absolute diference
of the estimation error for groups, and under/overestimation of fairness measures inconsistency in the extent to
which predictions under- or overestimate the true ratings.

Fairness across items addresses the fair representation of item groups [27] and it is addressed at group level and
at the level of individual items, too. The goal of many metrics is to measure the exposure or attention [27, 198] an
item group receives and assess the fairness of this distribution: in a ranked list of recommendations, lower ranks
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are assumed to get less exposure and, thus, less attention.15 Beutel et al. [26] propose the concept of pairwise
fairness, which aims to measure whether items of one group are consistently ranked lower than those of another
group. Other metrics put exposure across groups and relevance of items into relation. The disparate treatment
ratio (DTR) [198] is a statistical parity metric that measures exposure across groups proportional to relevance.
Diaz et al. [60] consider the distribution over rankings instead of a single ixed ranking. The idea behind the
principle of equal expected exposure is that łno item should receive more or less expected exposure than any other
item of the same relevance grade” [60]. Biega et al. [27] capture unfairness at the level of individual items; they
propose the equity of amortized attention, which indicates whether the attention is distributed proportionally
to relevance when amortized over a sequence of rankings. The disparate impact ratio (DIR) [198] goes further
than exposure and considers the impact of exposure: DIR measures across items groups, whether items obtain
proportional impact in terms of the click-through rate. The viable-Λ test [191] accounts for varying user attention
patterns through parametrization in the measurement of group fairness across items.

Business-oriented metrics are used by service providers to assess the business value of recommendations [112].
While service providers naturally are interested in user-centered metrics as positive user experience impacts
revenue, business-oriented metrics allow to directly measure click-through-rates [55, 86, 90, 126], adoption and
conversion rates [55, 90], and revenue [46, 145]. Click-through rates measure the number of clicks generated by
recommendations, whereas adoption and conversion rates measure howmany clicks actually lead to the consump-
tion of recommended items. Therefore, adoption and conversion rates, and even more so, the sales and revenue
generated by recommended items, more directly measure the generated business value of recommendations.

3.4.5 Evaluation System. Involving users in evaluations requires a (usually graphical) user interface to allow
users to interact with the system. In RS evaluation, diferent options are available concerning the extent to which
the evaluated system is incorporated in a real-world or industry environment. This aspect is highly interwoven
with the choice of whether to involve users in the evaluation. For an oline algorithmic evaluation, there is no
need to provide a user interface, as no users are involved. However, measuring user experience requires the
involvement of users and, hence, a user interface. Konstan and Riedl [138] distinguish three designs of systems for
evaluation: (i) systems dedicated to experimental use, which may range from interfaces for purely experimental
research to more sophisticated systems; (ii) collaborating with operators of real-world (industry) systems for
online ield (real-world) experiments; and (iii) developing and maintaining a research system and (large) user
community for (long-term) evaluations.
Also, łbad” user interface design may bias the assessment of RSs because they afect the users’ overall

experience [50, 173]. Users may evaluate recommendations diferently if they were presented by a improved
user interface. Putting efort into a good (or neutral) user interface design is expensive. Maintenance costs for a
dedicated research system are high, too. Likewise, acquiring a large set of users may be challenging. All these
issues contribute to the low adoption of non-oline evaluations.
Generally, there are several RS evaluation frameworks. Most of these libraries are primarily for oline evalu-

ations and hence, provide a set of recommender algorithms and an evaluation framework. These frameworks
include, for instance, LensKit [68, 72], MyMediaLite [84], LibRec [95], Rival [185, 186], Surprise [106], or El-
liot [14]. Recently, Beel et al. [19] proposed a łliving-lab” for online evaluations of scholarly recommender
systems that can be used on top of a production recommender system and logs all user actions (clicks, purchases,
etc.) to evaluate the algorithms’ efectiveness in online evaluations and user studies.

15While many approaches assume logarithmic discounting of attention [198], also other approaches exist, too (for example, using a geometric
distribution [27] or parametrizing varying attention patterns [191]).
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FEVR Component Brief Description

Evaluation Objectives

Overall Goal To evaluate whether users are able to ind likable music in the
recommendations computed by the novel RecAlg algorithm

Stakeholders Users of the system (algorithm)
Artists may also beneit from an increased item diversity as a more diverse set
of artists may be represented

Properties Item diversity in the recommendations; catalog coverage
Evaluation Principles

Hypothesis / Research
Question

�1: RecAlg provides users (on average) with more diverse recommendations
with respect to the intra-list diversity while maintaining prediction accuracy
compared to the baseline algorithm.

Control Variables Follow accountability framework by Bellogín and Said [24] (for randomization
in dataset splitting to prevent selection bias)

Generalization Power Limited due to lack of user involvement and dataset biases
Reliability Follow accountability framework by Bellogín and Said [24]
Experiment Type Oline Evaluation with A/B-testing
Evaluation Aspects

Types of Data Implicit ratings (listening events), side information for music tracks
Data Collection LFM-2b dataset [194]
Data Quality and Biases Platform bias, popularity bias, skewed gender distribution, imbalanced country

distribution.
Evaluation Metrics Prediction accuracy with RMSE; intra-list diversity in terms of diferent unique

artists
Evaluation System Existing evaluation framework Elliot [14]

Table 6. FEVR: Overview of Example Evaluation.

4 MAPPING A FICTITIOUS CASE TO FEVR

In the following, we irst present a ictitious case as an example evaluation. Then, we showcase how this scenario
can be mapped to the FEVR framework (Section 4.1) and discuss the limitations of this evaluation coniguration
(Section 4.2).

The context of the example is as follows: in an academic setting, a group of researchers has developed a novel
recommendation algorithm, termed RecAlg, that aims to improve the item diversity of music recommendations
by incorporating audio and lyrics features of tracks, while also improving (or, at least, maintaining) prediction
accuracy. The goal is to support users in inding likable music by providing personalized music recommendations.

4.1 Mapping to FEVR

With this example case, we revisit the major components of the proposed FEVR framework and discuss the design
components regarding the evaluation of the RS. We provide a compact overview of the design components of the
example case in Table 6. Note that the evaluation principles component draws from the other components and is
discussed at the end of this section.

As for the evaluation objectives, the overall goal is to evaluate whether users are indeed able to ind likable music
when provided with recommendations computed by the novel RecAlg algorithm. The stakeholders addressed are
naturally the users of the system (algorithm), butÐas the proposed algorithm aims to improve the diversity of
recommended tracksÐartists could also beneit from this increased item diversity as a more diverse set of artists
may now be represented in the set of recommended tracks. As for the properties evaluated, the researchers aim to
evaluate the diversity of recommendations; particularly, the change in catalog coverage (and hence, the change to
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items in the long tail of the popularity curve). FEVR’s evaluation design space (cf. Fig. 2 for a graphical overview
of the core components) encompasses the main evaluation principles, which we discuss in the following. As
experiment type, the group of researchers chooses to perform an oline evaluation to assess the basic algorithmic
performance of RecAlg (that still needs to be conirmed in later user-centric evaluations to evaluate whether
users do indeed also perceive the provided recommendations as more diverse and accurate).

The evaluation aspects that need to be considered in this evaluation encompass the data to be used, but also the
evaluation system and the evaluation metrics applied. As this example is situated in a scientiic setting, oline
experiments can be performed using an existing evaluation framework. In this particular case, the Elliot [14]
framework is chosen. As for the data used for the evaluation, the researchers rely on an extensive dataset of
listening events, namely the LFM-2b dataset [194]. This dataset contains 2 billion listening events (i.e., a user has
listened to a particular song) which represent implicit feedback as well as detailed side information on the music
tracks contained. LFM-2b is the most extensive and recent public dataset in the domain. In the experimental setup,
users for the training, test, and validation sets are chosen randomly to avoid introducing biases in this step. The
metrics employed directly relect the goals of our evaluation: for quantifying RecAlg’s prediction accuracy, the
group of researchers rely on RMSE and for measuring the diversity of recommendation lists, they rely on intra-list
diversity. As for the evaluation principles, the main hypothesis is that the novel RecAlg approach provides users
with more diverse recommendations concerning the intra-list diversity while maintaining prediction accuracy.
The generalization power of this evaluation is limited in the sense that it does not involve users, the dataset used
encompasses biases, and the fact that implicit feedback data was used. For a further discussion on the limitations
of this evaluation, please refer to Section 4.2. To ensure the reliability of the conducted experiments and to control
for confounding factors, the group of researchers follows the accountability framework by Bellogín and Said [24].

With this example evaluation scenario, we have illustrated how an evaluation coniguration can be mapped to
FEVR and demonstrated that FEVR can be used as a checklist for an evaluation coniguration. However, we note
that this described evaluation scenario is a very basic one and has limitations, which we discuss in the following
(Section 4.2).

4.2 Limitations and Discussion

As for any kind of oline evaluation with a publicly available dataset, the generalization power is limited due to
the inherent biases in the dataset. First and foremost, there is a platform bias and evaluation results would not
generalize to other music streaming platforms or even to other application domains. This and other dataset biases
(e.g., skewed gender distribution of users, imbalanced distribution across user countries) may be addressed by
extending the evaluation by integrating further datasets. Comparing evaluation results across datasets provides
the opportunity to reason across all results and, thereby, increases the generalizability of indings.
Furthermore, the presented example evaluation builds on assumptions which areÐat least in the scenario

presentedÐnot grounded on prior knowledge and not justiied with respective pointers to underlying theory or
observations. Many assumptions concern a user’s need for diversity and their perceived diversity. The evaluation
setting is built on a set of assumptions including that users indeed enjoy or even want artist diversity in their
playlists, that all users have similar diversity needs, that an individual’s diversity need is constant (i.e., context-
independent), and that individuals perceive the provided recommendations as diverse as the intra-list metric
suggests. With a lack of literature on those topics, it is necessary to integrate additional methods in the evaluation
to explore and clarify these assumptions (and to obtain a more comprehensive picture of the experiment’s results).
Frequently, this will require a mixed methods research approach [53] where quantitative and qualitative research
methods are combined. A recent tutorial at the ACM SIGKDDConference on Knowledge Discovery & Data Mining
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2021 [202]16 demonstrates how a mixed-methods approach is used in real-world (industry) settings (speciically,
the tutorial presents case studies from Spotify) to analyze and justify assumptions, develop business-oriented
metrics, so that further evaluation steps are valid and reliable.

Finally, the results of the presented evaluation will give direction about the next evaluation steps. Hence, the
evaluation results will inform whether the novel RecAlg algorithm achieves suicient performance to be further
evaluated in, for instance, a user study (e.g., by particularly considering diversity perception). Unsatisfactory
results will suggest revisiting the algorithm and exploring further opportunities. Again, FEVR can serve as a
checklist for the coniguration of the next evaluation step.

5 DISCUSSION, CONCLUSION, AND FUTURE DIRECTIONS

The review of literature on RS evaluation shows that inding an adequate coniguration for the comprehensive
evaluation of a RS is a complex endeavor; the evaluation design space is rich, and inding an adequate coniguration
may be challenging. In this paper, we consolidate and systematically organize the dispersed knowledge on RS
evaluation. With FEVR, we provide a basis, overview, and guidance for researchers as a profound source for
orientation in evaluating RS.

Still, for RS to work in practice (i.e., in industry) as well as for the research community to advance, we have to
engage in a more comprehensive evaluation of RSÐan evaluation that embraces the entire RS and its context
of use and does not only address single dimensions in isolation. Yet, to date, such a comprehensive evaluation
approach is hardly adopted in RS research.

From a practical perspective, the reasons for the low adoption of comprehensive evaluationÐand the excessive
use of oline evaluation onlyÐare manifold [39]: (a) identifying an adequate combination of evaluation designs
and conigurations (more broadly speaking, aspects that can and need to be addressed together) meeting the
evaluation objectives may be a complex task (particularly for inexperienced researchers); (b) the costs for involving
users in the evaluation process are high (compared to pure oline studies); (c) integrating results of multiple
evaluation designs and conigurations into an entire study is complex and drawing conclusions from components
efectively across the entire study can be challenging; and (d) evaluations considering multiple methods require
adequate skills in various (at least two) evaluation methods. Senior researchers tend to have a preference for
one method [171] and apply methodologically what they are strong at, which also prevents young researchers
from learning (and possibly adopting) additional methodical approaches. While these reasons for non-adoption
are all plausible, we argue that the goal should be to use the most adequate evaluation setting for set evaluation
objectives. In many cases, this will require an integration of multiple evaluation designs. This comes with several
challenges:

• Methodological issues. Jannach et al. [114] point to methodological issues and research practices in RS
evaluation where novel recommender approaches are compared to weak (e.g., non-optimized) baselines [77,
78, 153]. Showing łphantom progress”, as Ludewig et al. [153] term it, hamper the progress of research
and is of little value for evaluating the recommender approach under investigation. Along this line comes
the need for good evaluation protocols that are documented in papers with suicient detail [24, 36] to
strengthen reproducibility. Yet, using many diferent metric variantsÐeven if properly documentedÐhinders
the comparability across works. Accordingly, the development and establishment of standardized protocols
is a core issue that the community needs to address for advancing the ield.

• Methodological competencies. Employing a comprehensive RS evaluation requires researchers to build
competencies in a set of methods as expertise in only one method is insuicient. Furthermore, consolidating

16The slides of the tutorial can be found at https://github.com/kdd2021-mixedmethods. A similar case study has already been presented at the
tutorial on łMixed methods for evaluating user satisfaction” at ACM RecSys 2018 [85].
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these methods’ results into an integrated picture of the system’s quality and the perceived quality of the RS
is another skill set that has to be developed.

• Datasets. A crucial task is to ind or elicit datasets that are suiciently representative of the use case that the
RS is evaluated for. Reducing biases inherent in real-world data is considered one of the key challenges [28].
Furthermore, Jannach and colleagues [114, 115] call for the evaluation of RS’ longitudinal efects. One of
the challenges involved is to obtain a rich dataset over a long period of time in a comparable manner. With
the fast-paced progress in RS research, RS approaches are continually being updated and ine-tuned and
datasets embracing a longer period do likely encompass dynamics of having diferent RS approaches active
at diferent times.

• Multi-stakeholder RS. Research on multi-stakeholder RS is currently still in its infancy. For evaluation,
we can observe ła diversity of methodological approaches and little agreement on basic questions of
evaluation” [1].

• Conversational RS. Although conversational RS seem to advance at an accelerated pace, no consensus
on how to evaluate such systems has evolved yet [113]. For instance, conversational RS rely on natural
language processing (NLP), and evaluating language models and generation models is itself an inherently
complex task [113]. Using and evaluating such models in task-oriented systems such as conversational RS
might be even more challenging [113].

• Domain-speciics. The quality of recommendations depends on the particular domain or application. For
a news recommender, the recency of items is important. In the music domain, recommenders are often
considered useful when they support discovery of the back catalog. In tourism, the geographical vicinity
might be relevant. The evaluation coniguration has to take such domain-speciics into account [111]. This
requires deep domain knowledge (and data), which frequently requires collaborating with domain experts
in academia and industry. Evaluation without domain expertise bears the risk of being based on wrong
assumptions.

• Multi-* evaluations. Comprehensive evaluations encompassing the required multi-facettedness (e.g., multi-
method, multi-metrics, multi-stakeholder) appears to be an adequate and necessary pathway for RS
evaluation. The key issue is that we need to establish evaluations that are apt to characterize the broad
performance of a RS, which can only be accomplished with thoughtful integration of multiple methods.
This requires an evaluation culture where a suite of metrics is evaluated and reported, and where the needs
of the multiple stakeholders of RS are considered. The hurdles of such evaluations, including involved costs,
required skills, etc. areÐundeniablyÐimpediments we need to take up and overcome these challenges to
advance recommender systems and the ield of recommender systems at large. Yet, this seems to require a
paradigm shift in our research community’s evaluation eforts [111].

While FEVR framework provides a structured basis to adopt adequate evaluation conigurations, weÐas a
communityÐhave to move forward together: it is on us to adopt, apply, and establish suitable practices.
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