
Song Popularity Prediction using Ordinal Classification

Michael Vötter, Maximilian Mayerl, Eva Zangerle, Günther Specht

Department of Computer Science

Universität Innsbruck

Innsbruck, Austria

{firstname.lastname}@uibk.ac.at

ABSTRACT

Predicting a song’s success based on audio descriptors be-

fore its release is an important task in the music industry,

which has been tackled in many ways. Most approaches

utilize audio descriptors to predict a song’s success, typi-

cally captured by either chart positions or listening counts.

The popularity prediction task is then either modeled as

a regression task, where the popularity metric is precisely

predicted, or as a classification task by, e.g., transforming

the popularity task to distinct classes such as hits and non-

hits. However, this way of modeling the task neglects that

most popularity measures form an ordinal scale. While

classification ignores the order, regression assumes that the

data is in interval (or ratio) scale. Therefore, we propose to

model the task of popularity prediction as an ordinal clas-

sification task. Further, we propose an approach that uti-

lizes the relative order of classes in an ordinal classification

setup to predict the popularity (class) of songs. Our pre-

sented approach requires a machine learning model able

to predict the relative order of two pieces of music, and

hence can flexibly be applied using many types of pre-

dictors. Furthermore, we investigate how different ways

of mapping the underlying popularity metrics to ordinal

classes influence our model. We compare the proposed

approach with regression as well as classification models

and show its robustness w.r.t. different numbers of ordi-

nal classes and the distribution of the number of songs

assigned to them. Additionally, we show that, for some

prediction settings, our approach results in a better predic-

tive performance than classical regression and classifica-

tion approaches, while it achieves similar predictive per-

formance on other settings.

1. INTRODUCTION

Song popularity prediction is an important task in the mu-

sic industry, where sales, charts, or listening data are used

to determine the popularity of music. The goal is to pre-

dict the success of a song before or shortly after its release.

Such systems could be utilized by musicians to tweak their

songs towards success. For instance, they could use such
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predictors during the creation process of a song to deter-

mine if a given song will be successful. Record labels

could use such a system to determine which songs they

should support and promote.

To this end, the song popularity prediction task is either

modeled as a regression [1–3] or classification task [4–6].

Existing approaches make use of audio descriptors such as

Essentia audio features [7] for prediction. To determine the

popularity of songs, chart-based measures such as peak po-

sition and number of weeks in charts and listener- and play

counts on streaming platforms are used. Typically, they are

gathered from the Billboard Hot 100 charts 1 among other

country-specific charts or from streaming platforms such

as last.fm 2 and Spotify 3 . A wide range of machine learn-

ing approaches such as linear models [8, 9], SVM mod-

els [6, 8, 10], tree models [5], and neural network mod-

els [1–3] have been used for prediction. In a recent work,

we present two datasets (HSP-S and HSP-L) [11] and com-

pared such models on both types of prediction tasks in our

follow-up work [12].

Despite these previous efforts, modeling the song popu-

larity prediction task as either a regression or classification

task is insufficient. Modeling it as a regression task as-

sumes equidistant and continuous popularity values, while

modeling it as a classification task ignores the natural or-

der encoded in the utilized measures of popularity. Hence,

modeling it as a regression task requires that the result-

ing popularity measure is continuous. This is obviously

not the case for popularity measures such as chart position,

as they are always given as positive integers. Further, not

all popularity measures allow assuming equidistant gaps

between successive popularity values. E.g., chart metrics

such as the weeks in charts contradict this assumption, as

all songs that did not made it to the charts exhibit a value

of zero. Obviously, the songs that did not make it into

the charts are not all equally popular. Similar arguments

are valid for listening event-based measures of popularity.

Again, listener counts and play counts are always positive

integers. Further, songs that have no listening events on

a particular platform are not necessarily equally popular.

Additionally, metrics based on listening events have a high

resolution in terms of distinct popularity values and form

a power scale. We argue that predictions do not have to

be that fine-grained to be useful for the previously men-

tioned applications. Considering the fact that these counts

1 https://www.billboard.com/charts/hot-100
2 https://www.last.fm/
3 https://www.spotify.com/
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are in power scale, it is quite obvious that different “lev-

els” of popularity show a large difference in the number of

listening events, especially when considering truly popu-

lar songs. Hence, we argue that binning successive values

to reduce the number of distinct values is legit and still

keeps the majority of relevant information on the popular-

ity of a song. Binning is also done by modeling the task

as a classification task. Modeling it as a classical classifi-

cation task ignores the natural order of popularity values,

which in contrast means that valuable information is lost.

As a result, commonly used classification models cannot

use ordering information for their predictions.

To resolve these issues, we propose to model music pop-

ularity prediction as an ordinal classification task that en-

codes the order information. This allows exploiting the

natural ordering of popularity classes. We already laid out

in [11] that popularity measures are in ordinal scale. This

means that successive popularity values are not necessarily

equidistant, but they have an order. Hence, modeling the

task as an ordinal classification task addresses the fact that

popularity measures are in ordinal scale. Furthermore, this

task formulation allows adjusting the number of distinct

popularity classes by binning multiple successive popular-

ity values into a single popularity class, similar to a clas-

sical classification task. Combining popularity values is

enabled by the ordinal nature of those classes, without the

requirement that all classes have an equal size or distances

between each other. The extreme case would be to re-

duce the number of classes to two, resulting in the already

known hit/non-hit classification. Note that in addition to

classical classification, ordinal classification preserves the

order of classes. Here, we propose a novel pairwise ap-

proach for learning the ordering of pairs of songs, thereby

allowing us to rank songs. In addition, we derive repre-

sentatives for the individual ordinal classes. They are used

to compare a given song with the pairwise model to de-

termine its rank. Doing so, allows inferring the popularity

based ordinal classes (cf. Section 3.5) resulting in the final

popularity prediction.

To summarize, the contributions of the presented work

are: (i) We model the song popularity prediction task as

an ordinal classification task; (ii) We propose a novel ap-

proach for music popularity prediction based on a learned

pairwise comparator; (iii) We present an extensive evalua-

tion comparing different types of models (regression, clas-

sification, and pairwise) applied to multiple variations of

the ordinal classification task and (iv) share the source code

of the approach and all conducted experiments 4 .

2. RELATED WORK

In the following, we give an overview of different song

popularity prediction approaches and their evaluation.

Frieler et al. [5] utilize melodic features to distinguish

successful from non-successful pop songs, resulting in a

binary classification task. In [10], Dhanaraj and Logan ap-

ply classifier models that consume acoustic and lyrics fea-

tures to predict whether a song is a hit or not, resulting in a

4 https://github.com/dbis-uibk/
hit-prediction-code/tree/smc2023

comparable binary classification task. Further, Singhi and

Brown [13] use classifier models consuming lyrics features

to predict whether a song is in the hit or non-hit class. They

consider a song a hit if it made it to the Billboard Year-End

Hot 100 singles charts. In contrast, flops (non-hit songs)

are considered songs of the same artists that produced hits

that did not occur in the charts. In total, their dataset con-

tains 492 hits and 6,323 flops, showing the natural imbal-

ance of the two classes. A different definition of hits and

non-hits is used by Ni et al. [14]. They distinguish songs

that made it to the top five of the UK charts (hits) from

songs that resided in the range 30-40 (non-hits). Pachet and

Roy [15] introduce the HiFind Database containing popu-

larity measures as three popularity classes (low, medium,

and high).

In contrast, both Yang et al. [2] and Yu et al. [3] use a

neural network model trained on a dataset that contains

streaming-based popularity measures from KKBOX Inc., a

Taiwanese music streaming platform. They model the task

as a regression task and predict the popularity value based

on listener- and play counts. Similarly, we applied a neural

network model to Essentia audio features [7] to predict the

highest chart position of a song in a regression setup in our

work [1]. In that work, we also compute accuracy scores

based on the regression value by transforming the regres-

sion value to a hit (range 1-100) and non-hit (any other

value) class. Moreover, in a recent work, we created the

two datasets HSP-S and HSP-L and used them to compare

various models on song popularity prediction tasks [11].

In that work, we tackle regression tasks predicting the top

position and weeks in charts. Further, we predict the listen-

ing event-based popularity measures listener count, play

count, and Yang’s hit score [2]. We use these measures

to transform the regression tasks into binary classification

tasks by splitting the value range using the median. Note

that we use two distinct classes rather than a single class

for classification. To evaluate the predictive performance

of the regression experiments, we use Spearman’s ρ and

Kendall’s τ . Additionally, we report accuracy and F1 for

the classification experiments. In a follow-up work, we

provide additional results for further models in [12].

In contrary to the previously presented approaches, or-

dinal classification approaches utilize the relative order of

songs to learn how to rank songs based on popularity. Re-

lated previous work on ordinal classification, also called

ordinal regression, was done by Ren and Kauffman [16].

They investigate the development of the popularity of a

song over time using audio features, and external features

such as the artist’s voice, or if it was produced by a major

label. Based on these features, they aim to predict the rank-

ing of a song in an ordinal classification setup, where they

predict popularity for one week in advance. In contrast, we

solely use audio descriptors which do not change over time

to predict popularity measures. This results in a different

prediction setup as we predict an overall popularity mea-

sures that is not bound to a specific date (derived from the

full observations period covered in a dataset) while they try

to predict a popularity measure at a certain date (e.g., they

predict the popularity one week in the future).
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3.3 Train the Comparator

Our approach aims to train a model that compares two

songs to derive their relative order, relying on the feature

format (concat or delta) and a target value (cf. Section 3.2).

We train a pairwise comparator model that learns to predict

the three classes {−1, 0, 1} (cf. Equation (1)), represent-

ing the relative order of the pair’s two songs. Since we

use this prediction to determine the order of two songs, it

is sufficient to predict the correct sign or 0 as this predic-

tion is then used to determine the prediction of the ordinal

class (cf. Section 3.5). Relying on the sign allows utilizing

both classification and regression models as the pairwise

comparator without modifying their output.

3.4 Representative Selection

To predict the popularity of a song using the pairwise com-

parator model, we convert the learned ranking prediction to

an ordinal class prediction. We first derive a representative

sample for each ordinal class during training to compare

them with songs for which we are seeking popularity pre-

dictions (cf. Section 3.5). Note that the binning of popu-

larity values in ordinal classes (cf. Section 3.1) does not

allow distinguishing the popularity of songs within an or-

dinal class. Nevertheless, it would be possible to add fur-

ther labeling to songs within a class that enables that. To

keep our results comparable with traditional classification

models that cannot use such additional labeling, we de-

cided to only utilize the popularity encoded in the ordinal

classes (cf. Section 3.1). Hence, to determine a represen-

tative sample, we consider two distinct approaches. For

the first approach, we select a random song per class from

the training set to act as the representative sample of each

class. This random selection leads to a high variance in the

predictive performance when the experiment is repeated

multiple times. We attribute this to the fact that a purely

random selection can either (a) happen to choose a good

representative for a class, i.e., a song that is very character-

istic of the class, or (b) choose a bad representative, i.e., a

song that is effectively an outlier which is dissimilar to the

other songs in the same class. Hence, this approach is not

suitable to find songs that represent the ordinal class well.

These representatives are used to derive predictions; hence,

it is crucial to select a good representative. Therefore, we

propose a second approach, where we compute the aver-

age of the feature vectors of all songs in a given class in

the training set. The deterministic nature of this approach

leads to stable results in the predictive performance of the

overall approach across repeated runs of the same experi-

ment. Therefore, we will utilize this selection method of

representatives for our further experiments. Note that this

average represents the centroid of each class in terms of

features, resulting in an artificial feature vector.

3.5 Ordinal Class Prediction

To predict the ordinal class of a song, we propose a pro-

cedure inspired by the widely known insertion sort algo-

rithm. We utilize the ordinal class definition and com-

pare the song with the representatives of all classes (cf.

Section 3.4). Beginning with the representative of the least

popular class (lowest class index; depending on the popu-

larity measure this can also be the most popular class), we

successively compare the song with all further represen-

tatives in the order determined by their ordinal popularity

class. We continue this as long as the pairwise model, act-

ing as a comparator, predicts a value >= 0, meaning that

the currently compared representative is less popular (in

terms of class index) than the given song. Hence, we pre-

dict the first class for which the pairwise model predicts a

value of < 0 as its popularity class. This results from our

interpretation of the representatives. We account the song

that resides “between” two representatives to the latter, as

otherwise, it would not be possible to ever predict a song

for the first popularity class following the same procedure.

4. EXPERIMENTS

This section describes the experiments conducted to evalu-

ate the pairwise approach for popularity prediction mod-

eled as an ordinal classification task. We compare our

approach to baseline models performing traditional clas-

sification or regression tasks to show the usefulness of the

proposed ordinal regression approach. We train the base-

line regression models on the index of a one-hot encoded

representation of the ordinal classes, and then transform

their prediction to the closest class (index in the one-hot

encoded vector). To investigate the impact of the number

of classes, we run experiments with different numbers of

classes: two classes, five classes (inspired by [17]), and

from there on in steps of five up to 100 classes. Note that

using many classes can be considered an approximation

of a regression task, while small numbers are comparable

with previous binary classification tasks.

4.1 Evaluated Models

We evaluate three types of models: (1) classification mod-

els, (2) regression models, and (3) our pairwise ordinal

classification approach and chose baseline models based

on their results in [12].

For classification, we use a variety of models to com-

pare our approach against: The logistic regression classi-

fier (Logit) of scikit-learn [18] as a representative for a lin-

ear classification model, and a dense feed-forward neural

network using the multi-layer perceptron classifier (MLPC)

of scikit-learn. Similar to the logistic regression model, we

relied on the default parameters except for the layer struc-

ture, as this would result in a single hidden layer with 100

neurons as this would result in a rather small network com-

pared to previous network-based approaches (cf. [1–3]). In

contrast to this default, we use five hidden layers. The first

hidden layer following the input layer has a size of 256,

followed by three layers with 128 neurons and a further

hidden layer containing 64 neurons. This results in a neu-

ral network with seven layers in total, including the input

and output layer. We enabled early stopping provided by

the scikit-learn with a maximum of 200 epochs.

In addition, we evaluate regression models for prediction:

a linear regression model (Linear) and a MLP regression
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model (MLPR). In both cases, we utilize the scikit-learn

implementations and keep the default parameters. Again,

we change the layer configuration of the MLP to be the

same as the classifier model. To arrive at predictions in

the form of ordinal classes, we map the prediction of the

regression model to the closest ordinal class, effectively

converting a single value to a one-hot encoded vector.

For our pairwise approach, we use the four models intro-

duced above to learn the comparator at its core. As stated

in Section 3.5 it is possible to use the output of a regression

model as a comparator without further modification.

4.2 Experimental Setup

The main goals of the experiments are to tune our pairwise

approach and to compare our proposed pairwise approach

with classical regression and classification models.

Our experiments are based on the HSP-S and HSP-L data-

sets published in our previous work [11]. These datasets

mainly differ in their size, as the HSP-S dataset is balanced

in terms of hits and non-hits (hits are defined by a song’s

occurrence in the Billboard Hot 100). The HSP-S dataset

contains 7,736 songs while HSP-L contains 73,482 songs.

Further, they differ in the distribution of popularity mea-

sures. The different properties of both datasets (HSP-S and

HSP-L) allow showing the generalizability of the results.

As input features, we use the set of Essentia audio fea-

tures [7] already utilized by [1,11,12] to predict the ordinal

class derived from Yang’s hit score [2] (cf. Section 3.1).

These features include the low-level descriptors extracted

by Essentia describing bark bands, erb-bands, mel-bands,

and average loudness to name some of the features that de-

scribe the spectral and dynamics of a song. Further, the

input includes high-level features capturing the mood, vo-

cal, genre, and danceability derived using the classifiers in-

cluded in Essentia 5 . Yang’s hit score is computed by mul-

tiplying the logarithm of the listener count with the log-

arithm of the play count, and has been shown to be well

suited for popularity prediction. We run experiments using

both binning strategies presented in Section 3.1 and differ-

ent numbers of classes in a 5-fold cross validation setup. In

particular, we aim to determine how quantile binning and

uniform binning impacts the performance of the different

models. This allows analyzing the effects of the distribu-

tion of the number of songs contained in each class. Fur-

ther, we aim to gather insights on how models are affected

by different numbers of ordinal classes. Note that in case

of uniform binning, our pairwise approach cannot make

predictions for large numbers of classes. This is due to

the dataset size, as splitting it to a larger number of classes

leads to empty classes, preventing the selection of a repre-

sentative for this class that is needed for the prediction (cf.

Section 3.5). This effect can be observed beginning at 45

(HSP-S) or 55 classes (HSP-L).

Inspired by ordinal classification, we use a confusion ma-

trix to derive multiple classification metrics. We compute

correlation scores based on this confusion matrix. Sakai

5 These features are further described in Essentia’s documentation:
https://essentia.upf.edu/streaming_extractor_
music.html.

et al. [19] evaluated different evaluation measures for ordi-

nal prediction and suggest to use Cohen’s linear weighted

kappa [20] for ordinal classification. We follow this sug-

gestion and use Cohen’s linear weighted kappa as the pri-

mary evaluation metric for ordinal classification tasks. Note

that the ordinal information encoded in the confusion ma-

trix by the order of classes allows computing error metrics

such as mean absolute error (MAE).

5. RESULTS AND DISCUSSION

In the following, we present the results of our experiments.

First, we share insights into how different configurations

of the pairwise approach perform in terms of predictive

power. Second, we present a comparison of the pairwise

approach with baseline models. It is important to note that

for Cohen’s linear weighted kappa, higher values are better

and for the MAE, lower values are better. Further, the @n

(e.g., @5 and @10) notation in Table 1 refers to the number

of ordinal classes used for the particular experiment.

5.1 Different Pairwise Approach Setups

In a first step, we investigate the effects of the feature en-

coding strategies for our pairwise approach on both datasets.

The results can be seen in Table 1. The experiments on the

HSP-S dataset reveal that delta encoding overall leads to

significantly (paired Student’s t-test; p < .05) better re-

sults than concat encoding when comparing the individual

results of the folds of all selected comparator models for

our pairwise approach. For the HSP-L dataset, this also

holds for linear comparator models (linear and logistic re-

gression) but it does not hold true for the multi-layer per-

ceptron classifier (MLPC) and regressor models (MLPR)

comparators. For these, concat performs significantly bet-

ter than delta. We suspect that this is due to the large num-

ber of songs. This might enable the MLP comparator mod-

els to learn to compare the concatenated features of two

songs to determine their relative order. Nevertheless, linear

models overall outperformed these MLP models and our

experiments show that delta encoding is the preferred type

of encoding for linear models. Consequently, we present

detailed results utilizing this encoding (cf. Section 5.2).

Second, we investigate the impact of different compara-

tor models on our pairwise approach. Comparing all four

comparator models on the HSP-S dataset using uniform

binning shows that the linear comparator models (linear

and logistic regression) significantly outperform the multi-

layer perceptron models. Table 1 shows that linear mod-

els achieve approximately twice the kappa score of the

multi-layer perceptron models. This also holds true for

MAE. The finding that neural network-based comparators

achieve a lower kappa score compared to their linear coun-

terpart is also evident on the HSP-L dataset for uniform

binning. Similar behavior can be seen on the HSP-S dataset

with quantile binning. This indicates that for the current

pairwise model setup, linear models outperform more com-

plex models such as the utilized neural network model. We

hypothesize that only encoding the order of songs in a pair

(cf. Section 3.2) might not be descriptive enough to tune
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HSP-S HSP-L

Kappa MAE Kappa MAE

Binning Model Encoding @5 @40 @5 @40 @5 @40 @5 @40

Uniform Linear - 0.212 (0.009) 0.212 (0.008) 1.027 (0.022) 8.001 (0.298)⋆ 0.194 (0.005)⋆ 0.158 (0.003) 1.098 (0.008)⋆ 8.935 (0.179)

Uniform Logit - 0.207 (0.014) 0.173 (0.010) 1.052 (0.013) 8.465 (0.189) 0.156 (0.005) 0.134 (0.007) 1.173 (0.013) 9.493 (0.269)

Uniform Linear Pairwise concat 0.199 (0.007) 0.184 (0.007) 1.091 (0.021) 10.151 (0.410) 0.169 (0.004) 0.164 (0.004) 1.123 (0.017) 10.267 (0.129)

Uniform Linear Pairwise delta 0.210 (0.009) 0.202 (0.004) 1.065 (0.033) 9.688 (0.376) 0.171 (0.003) 0.164 (0.003) 1.121 (0.012) 10.291 (0.173)

Uniform Logit Pairwise concat 0.190 (0.007) 0.177 (0.008) 1.147 (0.024) 10.502 (0.394) 0.150 (0.005) 0.140 (0.002) 1.221 (0.027) 10.895 (0.346)

Uniform Logit Pairwise delta 0.203 (0.008) 0.198 (0.008) 1.087 (0.029) 9.853 (0.423) 0.169 (0.003) 0.153 (0.002) 1.163 (0.016) 10.603 (0.306)

Uniform MLPR - 0.157 (0.015) 0.155 (0.019) 1.117 (0.026) 8.546 (0.203) 0.140 (0.006) 0.160 (0.007) 1.163 (0.010) 8.720 (0.181)⋆

Uniform MLPC - 0.161 (0.022) 0.161 (0.015) 1.111 (0.024) 8.638 (0.125) 0.137 (0.005) 0.148 (0.002) 1.186 (0.013) 9.241 (0.279)

Uniform MLPR Pairwise concat 0.103 (0.008) 0.076 (0.014) 1.435 (0.062) 14.329 (0.968) 0.113 (0.008) 0.095 (0.020) 1.445 (0.035) 13.246 (1.173)

Uniform MLPR Pairwise delta 0.117 (0.011) 0.104 (0.011) 1.395 (0.038) 13.103 (0.420) 0.081 (0.005) 0.071 (0.002) 1.552 (0.049) 14.071 (0.510)

Uniform MLPC Pairwise concat 0.075 (0.009) 0.062 (0.006) 1.581 (0.053) 15.147 (0.351) 0.111 (0.008) 0.099 (0.011) 1.467 (0.060) 12.940 (0.818)

Uniform MLPC Pairwise delta 0.109 (0.013) 0.095 (0.008) 1.462 (0.027) 13.221 (0.558) 0.071 (0.005) 0.065 (0.004) 1.613 (0.042) 14.848 (0.652)

Quantile Linear - 0.210 (0.008) 0.211 (0.010) 1.053 (0.011)⋆ 8.708 (0.100)⋆ 0.153 (0.003) 0.155 (0.003) 1.088 (0.003)⋆ 8.944 (0.032)⋆

Quantile Logit - 0.255 (0.009) 0.225 (0.010) 1.247 (0.016) 10.903 (0.193) 0.223 (0.006) 0.203 (0.004) 1.362 (0.015) 12.113 (0.064)

Quantile Linear Pairwise concat 0.266 (0.016) 0.247 (0.012) 1.280 (0.025) 11.726 (0.198) 0.253 (0.005) 0.230 (0.014) 1.342 (0.010) 12.471 (0.147)

Quantile Linear Pairwise delta 0.276 (0.009) 0.264 (0.013) 1.261 (0.014) 11.362 (0.270) 0.255 (0.004)⋆ 0.236 (0.006) 1.331 (0.005) 12.397 (0.068)

Quantile Logit Pairwise concat 0.259 (0.012) 0.247 (0.016) 1.312 (0.028) 11.963 (0.344) 0.224 (0.006) 0.206 (0.003) 1.394 (0.009) 13.056 (0.052)

Quantile Logit Pairwise delta 0.276 (0.014) 0.260 (0.009) 1.272 (0.027) 11.586 (0.187) 0.241 (0.005) 0.222 (0.005) 1.360 (0.008) 12.712 (0.044)

Quantile MLPR - 0.182 (0.021) 0.180 (0.012) 1.240 (0.029) 10.397 (0.177) 0.157 (0.003) 0.166 (0.007) 1.269 (0.011) 10.116 (0.191)

Quantile MLPC - 0.190 (0.021) 0.180 (0.027) 1.292 (0.026) 11.269 (0.493) 0.155 (0.003) 0.173 (0.007) 1.361 (0.005) 11.582 (0.130)

Quantile MLPC Pairwise concat 0.126 (0.016) 0.102 (0.014) 1.624 (0.043) 15.799 (0.466) 0.190 (0.010) 0.130 (0.035) 1.515 (0.029) 15.708 (0.862)

Quantile MLPC Pairwise delta 0.151 (0.029) 0.144 (0.021) 1.572 (0.056) 14.675 (0.306) 0.104 (0.007) 0.097 (0.008) 1.681 (0.014) 16.079 (0.170)

Table 1: Summary of our results containing linear-weighted kappa scores and MAEs on both datasets and binning for

baseline models and multiple setups of our pairwise approach with standard deviation in brackets. The best results per

dataset, binning, and metric are in bold. ⋆ means significantly better (tested with a paired Student’s t-test; p < .05)

the large number of parameters for the utilized multi-layer

perceptron approach.

As a further observation, the linear regression model as a

comparator obtains significantly higher kappa scores com-

pared to the logistic regression model, across both datasets

and class mappings. Similar effects can be seen when com-

paring the respective MAEs. The same effects can be ob-

served by comparing MLPR and MLPC comparator mod-

els for our pairwise model based on kappa score. We lead

this back to the comparator (cf. Section 3.3): regression

models are not strictly bound to the three values {−1, 0,

1} for prediction, while classification models are bound to

these three classes. As a consequence, we only report de-

tailed results for different numbers of classes using a linear

regression comparator model in the following section.

5.2 Different Numbers of Ordinal Popularity Classes

Figure 2a shows the results for different models applied

to the HSP-S dataset using different numbers of ordinal

classes. We provide results for a multi-layer perceptron

regression model (MLPR), a linear regression (Lin), a lo-

gistic regression model (Log) and our pairwise approach

utilizing delta encoding and a linear regression model as

its comparator (Lin-Pw). Further, we include results for

both uniform (L) and quantile binning (Q). E.g., L-Lin-Pw

stands for linear binning with a linear regression compara-

tor used in the pairwise model. The pairwise model applied

to uniform binning could not be evaluated for 45 classes

and above. The reason for this is that we need to select

representatives (cf. Section 4.2) that are not available for

all ordinal classes beyond this number of classes.

For both datasets, the pairwise approach with linear re-

gression as its comparator resides among the best perform-

ing models in terms of kappa score for uniform binning.

It significantly outperforms all models on both datasets,

except for the pure linear regression model on the HSP-

S dataset. Note that for uniform binning we only included

results up to 40 classes for HSP-S and up to 50 classes

for HSP-L in our significance tests as we do not have re-

sults for higher numbers of classes for the pairwise ap-

proach (cf. Section 3.5). Further, we see in both Figure 2a

and Figure 2b that the linear pairwise approach significantly

outperforms all other approaches on quantile binning. An

explanation for this effect could be that quantile binning

leads to the same number of songs for each class. Hence,

it is equally likely for each class’s songs to be selected for

each pair—in contrast to the uniform binning experiments

where this is dependent on the distribution of songs among

the classes. This effect is caused by the random selection

of songs during the pair creation (cf. Section 3.2), which

leads to a lower probability of being selected for samples

from a class with lower numbers of songs. Additionally,

the logistic regression model as a representative of classi-

fier models benefits from the balanced numbers of songs

per class resulting from quantile binning. We observe that

on both datasets it performs significantly better than the

same model run on uniform binning. Further, the logis-

tic regression classifier model performs significantly better

than the linear regression model on the HSP-S as well as

the HSP-L dataset with quantile binning. Further, we ob-

serve that the opposite is true for uniform binning. For

this setup, the linear regression model significantly outper-

forms the logistic regression classifier model.

The MLP regression model reveals comparable results

as the linear regression models on the HSP-L dataset (cf.

Figure 2b), independent of the used binning. While the

MLP regression model performs worse than the linear re-

gression model on the smaller HSP-S dataset (cf. Figure 2a).

These findings are similar to the results we reported in our

previous work [11], where we showed that simple linear

models achieve comparable results to those achieved by

neural network models. This is similar to the observations
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many models and setups, which demonstrates the gener-

alizability of the proposed approach. For the presented

work, we decided to keep the input as ordinal classes to

maintain comparability to the plain classification task. In

future work, we plan to investigate whether the approach

could further be improved by utilizing the exact popularity

value to train the model instead of the ordinal class repre-

sentation. This would also allow computing better fitting

representatives by selecting them close to the boundary be-

tween two ordinal classes. Additionally, we plan to inves-

tigate the effects of more complex pair creation strategies

that consider the distribution of songs among popularity

classes. We hypothesize that this might contribute to im-

proving the performance of the uniform binning setup by

compensating for the class imbalance. Hence, it will be in-

teresting to see whether more advanced pair creation tech-

niques will improve the overall performance of the model.

8. REFERENCES

[1] E. Zangerle, M. Vötter, R. Huber, and Y.-H. Yang, “Hit

Song Prediction: Leveraging Low- and High-Level

Audio Features,” in Proceedings of the International

Society for Music Information Retrieval Conference

(ISMIR), 2019, pp. 319–326.

[2] L.-C. Yang, S.-Y. Chou, J.-Y. Liu, Y.-H. Yang, and Y.-

A. Chen, “Revisiting the problem of audio-based hit

song prediction using convolutional neural networks,”

in Proceedings of the IEEE International Conference

Acoustics, Speech and Signal Processing (ICASSP),

2017, pp. 621–625.

[3] L.-C. Yu, Y.-H. Yang, Y.-N. Hung, and Y.-A. Chen,

“Hit Song Prediction for Pop Music by Siamese CNN

with Ranking Loss,” arXiv preprint arXiv:1710.10814,

2017.

[4] J. Lee and J. Lee, “Music Popularity: Metrics, Charac-

teristics, and Audio-Based Prediction,” IEEE Transac-

tions on Multimedia, vol. 20, no. 11, pp. 3173–3182,

2018.

[5] K. Frieler, K. Jakubowski, and D. Müllensiefen, “Is it
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