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ABSTRACT
Recommender systems (RS) traditionally leverage the users’ rich
interaction data with the system, but ignore the sequential depen-
dency of items. Sequential recommender systems aim to predict the
next item the user will interact with (e.g., click on, purchase, or listen
to) based on the preceding interactions of the user with the system.
Current state-of-the-art approaches focus on transformer-based
architectures and graph neural networks. Specifically, graph-based
modeling of sequences has been shown to be state-of-the-art by
introducing a structured, inductive bias into the recommendation
learning framework. In this work, we outline our research into
designing novel graph-based methods for sequential recommenda-
tion.
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1 INTRODUCTION
The most widely used traditional RS approaches include content-
based and collaborative filtering systems [20]. Collaborative filter-
ing systems predict the users’ preference based on the interests
of other, similar users: If Users A and B have a similar interest in
one or multiple items, then they are likely to have similar inter-
ests for other items too. Content-based systems model the users’
preferences only based on positive interactions and aim to match
similar items, e. g., if the user listens to songs of a certain singer
on a music platform, it will more likely recommend songs from
the same singer. These conventional RS model the user-item in-
teractions in a static way and ignore any temporal information
contained in the interaction sequence such as timestamps or order.
Therefore, such RS are only able to capture the general preference
of the user. In contrast, sequential recommendation (SR) systems
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suggest succeeding items or whole sequences of possible interest to
the user by modeling the sequential dependencies in the user-item
interaction history. SR emphasizes the dynamics in the interac-
tion sequence and uses long-term and short-term dependencies to
capture the current preference of a user to provide more accurate
recommendations [32].

User A

Figure 1: An example of SR: User A booked a flight, a hotel
and rented a car. What will be his next action?

Using SR methods as a recommendation model has distinct ad-
vantages over general recommender systems. In real-world scenar-
ios, interactions mostly happen successively and are not isolated
from each other. Figure 1 shows an example of a shopping spree of
User A. In this scenario (the user is booking a holiday), each action
depends on the prior ones and so all interactions are sequentially
dependent: As a next action User A might book tickets for a tourist
attraction. This example also shows that user-item interactions
usually happen in a certain sequential context. Additionally, the
preference of the user and the popularity of different items are
dynamic (e. g., music or clothing) rather than static over time due to
personal development and trends [23]. These typical characteristics
of online interaction sequences are captured by SR systems, but are
hard to model with traditional RS.
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Figure 2: Example of global transition graph construction
from observed user behavior sequences. Edge weights corre-
spond to the number of appearances of the item-item tran-
sitions in the user sequences. Note that the edge weights
usually get normalized before used in training the GNN.

Current state-of-the-art models in SR comprise the usage of Re-
current Neural Networks (RNNs) [15, 26], Attention [11, 17] and
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Graph Neural Networks (GNNs) [33, 36, 39] to model the interac-
tion sequences. In our research, we focus on GNN-approaches that
construct global item graphs including all user-item interactions
and learn the sequential item embedding from its neighborhood
in the graph as opposed to methods that represent each user in-
teraction sequence as a directed graph of items. An example of
such global item graph construction is given in Figure 2. In this
example the global item graph is constructed from four user inter-
action sequences where each transition between items increases
the weight of the corresponding directed edge between those items
(nodes) in the graph. Nevertheless, there are many possibilities for
how to integrate the GNN framework into the task of sequential
recommendation. We have analyzed relevant work in graph rep-
resentation learning as well as sequential recommendation and
identified following important gaps in graph-based SR that we aim
to tackle in the proposed PhD project:
(G1) Recent work in SR based on GNNs mostly ignore item fea-

tures to improve the item representation in the model [21].
(G2) Graph-based sequential models usually only consider the or-

der in the interaction sequence and fully neglect the dwelling
time or the time difference between interaction sequences [1,
5, 16].

(G3) GNNs are prone to the over-smoothing effect, where node
representations converge to the same value over multiple
layers, and also introduce additional computational complex-
ity [3, 12].

(G4) Datasets in SR potentially include noisy relations (e. g., user
misclicks on an item) and can introduce misleading informa-
tion into the learning process. Filtering those noisy relations
on the other hand leads to an increased data sparsity, which
is already severely present in the original setting of SR [8, 38].

(G5) Current works in explainability of recommender systems
rely on graph-based representations [2], but struggle to pro-
vide intuitive explanations due to the lack of feature-rich
datasets.

To summarize, the core goals of our research comprise extending
graph representations with additional feature information as well as
improving the graph construction and learning process for informa-
tive item embeddings. Our research will investigate and aim to fill
those described gaps in graph-based sequential recommendation.

2 RELATEDWORK
In this section, we cover important research related to learning
graph and node embeddings as well as sequential recommendation.
Additionally, we will indicate potential gaps in the research and
align them with our overall research goal of improving graph-based
sequential recommendation.

2.1 Graph and Node Embeddings
Graph embedding aims to generate low-dimensional vector repre-
sentations of the graph’s nodes which preserve topology and lever-
age node features. Non-deep learning methods are mainly based
on random walks to explore node neighborhoods [6, 22, 27]. With
Graph Convolutional Networks (GCNs) [13, 30], more sophisticated
graph embedding methods than random-walk-based approaches
were introduced: To scale GCNs to large graphs, the layer sampling

algorithm [7] generates embeddings from a fixed node neighbor-
hood. Current state-of-the-art methods in self-supervised/semi-
supervised learning of representations rely on contrastive methods
which base their loss on the difference between positive and nega-
tive samples. Deep Graph Infomax (DGI) [31] contrasts node and
graph encodings by maximizing the mutual information between
them. Hassani and Khasahmadi [9] propose multi-view representa-
tion learning by contrasting first-order neighbor encodings with
a general graph diffusion. Contrastive learning methods usually
require a large number of negative examples and are, therefore,
not scalable for large graphs. The approach by Thakoor et al. [29]
learns by predicting substitute augmentations of the input and
circumventing the need of contrasting with negative samples. In
GraFN [14] a semi-supervised node classification framework lever-
ages few labeled nodes to learn discriminative node representations
and ensures nodes from the same class are grouped together.

The aforementioned methods can easily incorporate external
item feature information as initial node embeddings, but are rarely
used in the SR domain. Additionally, none of the existing meth-
ods appear to be specifically designed for the task of auto-tagging,
which aims to predict relevant labels or tags for a given item [34]
and is becoming increasingly important to generate or enrich rec-
ommendation datasets (cf. gaps (G1) and (G5)).

2.2 Sequential Recommendation
The initial phase of sequential recommendation focuses on dis-
covering short-term item representations and interaction patterns.
Markov decision processes are used in early works to model the
interaction sequences. In FPMC [24], first-order Markov chains
capture sequential patterns while matrix factorization models long-
term user preferences. Also, convolutional neural networks (CNNs)
have been found to be useful, where items are seen as images
and short-term sequential patterns are learned via convolutional
filters [28]. Xu et al. [41] combine CNNs with long-short-term
memory to extract additional complex long-term dependencies.
In HGN [18], a feature and instance gating mechanism is used
to capture long- and short-term user interests. Other studies ap-
ply the attention mechanism to obtain and fuse different levels of
interaction information [25, 42].

Self-attention and Transformer-based architectures are widely
used for sequential recommendation models. SASRec [11] applies
the self-attention mechanism to identify relevant interactions from
the user’s history. Others use custom Transformer models to pro-
vide more personalized recommendations [4, 35]. In FDSA [43], het-
erogeneous features of items are integrated via feature sequences,
and self-attention is applied to jointly model item and feature tran-
sition patterns. 𝑆3-Rec [45] utilizes self-supervised learning to en-
hance the item representations via pre-training methods.

Hsu and Li [10] extract a local subgraph from a user-item pair
and apply self-attention to encode long-term and short-term tem-
poral patterns. MA-GNN [19] captures the item contextual infor-
mation within a short-term period with a graph neural network
and utilizes a shared memory network to model long-range de-
pendencies. Work in [5] utilizes temporal graph representations to
model continuous-time recommendation, where user and item em-
beddings are generated for any unseen future timestamps. Zhang
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et al. [44] extract augmented sequences representations from an
item transition graph for a contrastive learning objective.

In session-based recommendation (SBR), a subtask of sequential
recommendation, user profiles, and long-term interaction histories
are no longer available. Most recent works in SBR are based on
GNNs: As the first to introduce the concept of representing ses-
sions as graphs, SR-GNN [37] models each session as a directed,
unweighted graph and applies a gating mechanism to generate
session representations. This work is extended by a self-attention
mechanism in GCSAN [40] to effectively capture long-range depen-
dencies. Incorporating collaborative knowledge into GNN-based
methods leads to a new line of research. GCE-GNN [33] learns
item embeddings on a session level as well as on a global level and
uses a soft-attention mechanism to fuse the learned item repre-
sentations. Chen and Wong [3] tackle the long-range dependency
(over-smoothing) problem of session graphs by introducing a loss-
less encoding scheme and a shortcut graph attention layer. Xia
et al. [38] introduce a dual-channel hypergraph to capture beyond-
pairwise relations and apply self-supervised learning to maximize
the mutual information between both session representations.

Recent research in the field of graph-based sequential recommen-
dation has several limitations and room for improvement. Unlike
earlier approaches that attempted to clean noisy data, there is lit-
tle research on developing GNNs that can learn from noisy data
without compromising performance (cf. gap (G4)). Additionally,
there has been a recent push towards using more computationally
complex GNN models that can better capture the structure and
relationships within graphs. However, this increased complexity
comes at the cost of greater computational resources (cf. gap (G3)).
Another area of focus has been on addressing data sparsity, par-
ticularly in the context of contrastive learning (CL). Although CL
has shown promise in learning representations from sparse data,
there is still considerable room for improvement in this area (cf.
gap (G4)).

3 RESEARCH OBJECTIVES
Our analysis of the field of graph-based sequential recommendation
identified various gaps and issues as shown in the previous sections.
To fill the previously identified research gaps, our research will seek
to address the following research questions and provide valuable
contributions in this field:

RQ1: How can graphs effectively be applied to incorporate item
feature information in the setting of SR?. Graphs can be used in dif-
ferent ways in SR: To model the interaction sequences as separate
graphs or to generate global item and user graphs based on the
co-occurrences of item interactions, social networks, or knowledge
graphs. Each node in a graph can be initially described via item
feature information as opposed to simple one-hot encoding. As a
first work to answer this research question, we proposed GCNext,
a graph-based unsupervised learning approach to pre-train item
embeddings with item feature information [21]. This pre-training
approach can be used as an extension to any sequential model, be it
nearest-neighbor methods or neural network models, in a plug-in
fashion. To generate the pre-trained item embeddings, a global item
co-occurrence graph is constructed from which the item embed-
dings are learned via a custom graph-encoder architecture based on

attentional convolutions [30]. These graph-based item embeddings
are used to initialize the item embedding tables of the correspond-
ing neural network model. For extending nearest-neighbor methods
we integrate the learned embeddings via session similarity compu-
tation based on the cosine distance of the graph-based embeddings.
The evaluation performed on three session-based recommenda-
tion datasets showed that our approach significantly boosts the
performance of the underlying sequential models.

RQ2: How can graph-based methods tackle the noisy and sparse
data problem? Current graph-based methods [33, 36, 38] capture
the topological structure of the sequence graph and rely on multi-
hop information aggregation in GNNs to exchange information
along edges. Consequently, graph-based models suffer from over-
smoothing (node representations converge to the same value) if the
number of layers is larger than three [3, 12]. Additionally, graph-
based methods are prone to noisy item relations in the training
data and introduce high complexity for large item catalogs. We
propose to explicitly model the multi-hop information aggrega-
tion mechanism over multiple layers via shortest-path edges based
on knowledge from the sequential recommendation domain. Our
approach does not require multiple layers to exchange informa-
tion and ignores unreliable item-item relations. Furthermore, to
address inherent data sparsity, we apply supervised contrastive
learning by mining data-driven positive and hard negative item
samples from the training data. This work is submitted to the 17th
ACM Conference on Recommender Systems and is currently under
review.

RQ3: How can we effectively incorporate temporal information in
the graph structure? User interaction sequences are usually not only
ordered sequentially but also contain the timestamp per user-item
interaction. From this information, we can infer the dwelling time
or periodicity of items which potentially increases the recommenda-
tion performance. However, most of the current SR systems ignore
this valuable information and only rely on the order of items in
a sequence [11, 28]. To tackle this research question we plan to
examine hyper-graphs in the setting of sequential recommendation
and capture time information with personalized temporal point
processes to model periodicity and mutual excitation of items.

RQ4: How can we incorporate item features to increase recommen-
dation performance and explainability? As described in RQ1, each
item can be described by features based on its content or meta-data.
These features can support the learning process of the model by
providing additional information per item. Additionally, known
item features allow us to gain deeper knowledge about the insides
of the model and explain its recommendation more coherently. Our
research goal is to extend a large, feature-rich music dataset with
emotional features based on techniques from the semi-supervised
graph learning domain [13, 14] and use this dataset to generate
explainable and more personalized recommendations.

4 CONCLUSION AND NEXT STEPS
In this paper, we analyzed recent works in graph-based sequential
recommendation and identified various issues and research gaps
as part of the ongoing PhD project. To contribute to this field
of research, we formulate research questions and seek to answer
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them in a profound and rigorous fashion. As our research is in an
advanced state and already investigated RQ1 and RQ2, we plan to
tackle RQ3 and RQ4 as next steps.
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