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Abstract

Due to the rise of music streaming platforms, huge collections of music
are now available to users on various devices. Within these collections,
users aim to find and explore songs based on certain criteria reflecting
their current and context-specific preferences. Currently, users are lim-
ited to either using search facilities or relying on recommender systems
that suggest suitable tracks or artists. Using search facilities requires
the user to have some idea about the targeted music and to formu-
late a query that accurately describes this music, whereas recommender
systems are traditionally geared towards long-term shifts of user pref-
erences in contrast to ad-hoc and interactive preference elicitation. To
bridge this gap, we propose Gemsearch, an approach for personalized,
explorative music search based on graph embedding techniques. As the
ecosystem of a music collection can be represented as a heterogeneous
graph containing nodes describing e.g., tracks, artists, genres or users,
we employ graph embedding techniques to learn low-dimensional vector
representations for all nodes within the graph. This allows for efficient
approximate querying of the collection and, more importantly, for em-
ploying visualization strategies that allow the user to explore the music
collection in a 3D-space. Based on a dataset with over 1.5 million graph
nodes, we show that the performance of our recommendations outper-
forms standard matrix factorization methods and produces results that
are comparable to UserKNN techniques in terms of personalization. The
strength of our system which are the seeding items to model short-term
preferences, achieve even higher precision@10 values.
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Introduction

The following master thesis presents Gemsearch, a graph embedding
based music search which aims to combine flexible query mechanisms
with personalized recommendations. Furthermore, the proposed method
allows implicit search refinements and explorative 3D visualizations.
This thesis embraces two papers and an implementation appendix. The
former paper introduces the overall Gemsearch system and in particu-
lar its embedding and query mechanism to retrieve personalized results
based on seeding elements. In addition, we present here an evaluation
on track prediction performance which was conducted on playlist data.
The second paper is a specialization and focuses purely on the visual-
ization of embeddings which were derived from graph embedding tech-
niques. This paper was submitted and accepted on the Intelligent Music
Interfaces for Listening and Creation congress in Tokyo, Japan, March
2018.

The implementation appendix contains specific software architecture de-
tails about the prototype system and should ease the creation of poten-
tial extensions.
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ABSTRACT

Due to the rise of music streaming platforms, huge collections of
music are now available to users on various devices. Within these
collections, users aim to find and explore songs based on certain
criteria reflecting their current and context-specific preferences.
Currently, users are limited to either using search facilities or rely-
ing on recommender systems that suggest suitable tracks or artists.
Using search facilities requires the user to have some idea about the
targeted music and to formulate a query that accurately describes
this music, whereas recommender systems are traditionally geared
towards long-term shifts of user preferences in contrast to ad-hoc
and interactive preference elicitation. To bridge this gap, we pro-
pose Gemsearch, an approach for personalized, explorative music
search based on graph embedding techniques. As the ecosystem
of a music collection can be represented as a heterogeneous graph
containing nodes describing e.g., tracks, artists, genres or users,
we employ graph embedding techniques to learn low-dimensional
vector representations for all nodes within the graph. This allows
for efficient approximate querying of the collection and, more im-
portantly, for employing visualization strategies that allow the user
to explore the music collection in a 3D-space. Based on a dataset
with over 1.5 million graph nodes, we show that the performance
of our recommendations outperforms standard matrix factorization
methods and produces results that are comparable to UserKNN
techniques in terms of personalization. The strength of our sys-
tem which are the seeding items to model short-term preferences,
achieve even higher precision@10 values.
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1 INTRODUCTION

In recent years, music streaming platforms have become a cen-
tral means for listening to music as these allow users to access
huge collections of music. This evolution has also influenced the
way users search and explore music. For instance, the streaming
platform Spotify currently serves 140 million active users and pro-
vides a collection of more than 30 million songs! (as of June 2017).
Consequently, the primary objective for users has shifted from re-
trieving specific songs to finding and ultimately exploring songs
that match certain criteria reflecting the user’s current preferences
and context [7, 11].

Currently, two paradigms allow users to explore large music col-
lections: search and recommender systems. Utilizing naive search
approaches based on simple attribute matching requires the col-
lection data to be fully annotated with metadata. When relying

!http://press.spotify.com/us/about

on keyword search facilities, the user is required to have some
idea of his/her current preferences and must be able to formulate a
query that actually describes these preferences well. More advanced
search facilities are based on content similarities of items (aka “find
similar artists or songs”) and are rarely personalized. Especially
data sparsity and the lacking ability for comparing heterogeneous
items (tracks, artists, albums, etc.) makes it hard for such systems
to succeed. In contrast, recommender systems propose items that
might be suitable for the user (based on some collaborative filtering
approach or more complex models. While recommender systems
do not require the user to be able to formulate his/her current
preferences, the user also is not able to directly influence recom-
mendations by stating e.g., a starting point for his/her explorative
search for music matching his/her current preferences (except for
feedback mechanisms like relevance feedback and explicit ratings
that influence the user model in the long term).

Only very few approaches like, e.g., the one proposed by Chen
et al. [1] allow the user to specify his/her current needs and prefer-
ences in an abstract manner, where the returned results are jointly
based on the query (the user’s current information need) and the
user’s personal music preferences. However, there is still a sub-
stantial lack of systems which combine flexible search mechanisms
with user interfaces that provide dynamic, exploration-driven visu-
alization strategies for large collections of music.

Therefore, we propose the Gemsearch system, which stands
for graph embedding based music search, to bridge this gap in
explorative music search. In particular, we propose to use graph em-
bedding techniques for computing latent representations of items
contained in the graph, such as tracks, users, artists, genres or acous-
tic features of tracks. Using such graph embedding techniques [18],
a low-dimensional latent vector representation is learned for ev-
ery node. These firstly allow to create advanced search facilities
as search queries can be encoded in the same vector space where
every graph node is encoded. As a result, not only exact results can
be retrieved, but also similar items and hence, exploiting previously
unknown similarities between heterogeneous items that can be
utilized to retrieve diverse search results. Secondly, the obtained
vector representations can be exploited for advanced visualization
paradigms, enabling explorative music search beyond traditional
list-based aggregations of search results that only provide a one-
dimensional view of the retrieved items.

Real world applications usually generate new data during run-
time which requires to update previously learned models. To opti-
mize this process and avoid the recreation of models from scratch,
we present an extension to the Deepwalk [15] algorithm which
allows to extend initially learned embeddings with new graph struc-
tures such as vertices and edges on the fly.
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To evaluate the proposed system, a Spotify dataset containing
852,293 tracks is used to perform user-track recommendation and
to predict the contained tracks of playlist based on its title. We
show that our system outperforms state-of-the-art matrix factor-
ization methods and is comparable to UserKNN recommendations.
Through the incorporation of seeding items which we extract from
the playlist title, even higher precision@10 values are achieved. In
particular our contribution are the following:

e We propose a flexible query-system for music which incor-
porates personal long-term preferences with seeding items
and which is based on graph embedding techniques.

e We explain an extension to the Deepwalk algorithm which
allows to extend the search-underling data-model on the fly.

e We present a innovative method to visualize search results
in 3D scenes which combines implicit and explicit query-
refinements.

The remainder of this paper is structured as follows. In Section 2,
we describe related work and graph embedding. Section 3 presents
Gemsearch a system for personalized music search. The visualiza-
tion prototype for explorative music search is proposed in Section 4.
Then Section 5 describes the evaluation setup which results are dis-
cussed in Section 6. We conclude the paper in Section 7 by summing
up key aspects and detailing future work.

2 RELATED WORK AND BACKGROUND

In this section we first recap graph embedding in general because
it is the fundamental aspect of our computational model. Then we
describe related work from two fields: query-based recommender
systems and approaches which focus on user interfaces for the
exploration of new music.

Graph embedding techniques aim to transform graph structures
into a low dimensional vector space. More formally, given a graph
G = (V,E) with vertices V and edges E, a graph embedding is
a mapping f : v; — y; € R? Vi € [n] such that each node v;
in the initial graph is mapped to a vector representation y;. This
resulting vector space has d < |V| dimensions and the function f
preserves some proximity measure defined on graph G [4]. Having
this coherent search space makes it much easier to calculate higher-
order proximities between heterogeneous nodes. Similar items can
be retrieved using nearest-neighboring searches.

Existing embedding algorithms can in general be categorized into
factorization based, random walk-based and deep-walking based
methods. Concerning time complexity and preserved higher order
proximities, mainly random walk based methods are interesting.
Others methods either only embed similarities between connected
nodes or their runtime is dependent on the number of edges |E| in
contrast to O(|V|) [4]. As real-world network graphs usually tend
to contain more edges than vertices (|V| < |E|), these methods scale
better on large datasets.

The two most popular random walk based methods are Deep-
walk [15] and node2vec [5]. For this work, Deepwalk was chosen
because despite that node2vec retrieves better embeddings in the-
ory, it is not possible to extend the graph structure after its initial
creation (cf. Section 3.3).
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Deepwalk computes embeddings in two steps: First, short ran-
dom walks over edges are generated and then unsupervised feature
learning is applied to compute latent representations for each node.
The primary task of the random walks is to reflect neighborhood
relations of the graph structure. Each node is used a fixed number
of times to start path traversals over randomly selected connected
edges. The length of these paths is called window size and can be
parameterized. Using these walks as training data, a representation
for each node is learned such that the co-occurrence probability
among nodes within the same window is maximized. In the field of
natural language processing, this method is known as word embed-
ding and especially popular with word2vec [13]. Both Deepwalk and
node2vec make use of word2vec in their algorithms and reference
implementations to embed arbitrary graph structures with random
walks.

Recently, graph embedding techniques have also been introduced
to the field of music information retrieval. Chen et al. [1] utilize
graph embeddings for realizing a query-based music recommender
approach that is similar to the one presented in this paper. The
main difference is that the music graph was modeled by Chen as a
bipartite graph with users in one and all other items in the other set.
This allows to create next track recommendations based on recent
seed tracks. However, item similarities are only constructed through
collaborative filtering without content relationships because music
items themselves are not connected in the initial graph.

Chung et al. [2] utilize a pure text-based music retrieval on the
same dataset we are using to predict the content of playlists with
their title. A common latent representation of words and songs is
learned with unsupervised learning based on the co-occurrence
of tracks and words in playlist titles. However, in this model only
tracks are included, proximities are based on playlists and the con-
struction of queries is very limited.

For the task of building visualizations for music exploration,
there are a number of relevant approaches, mostly based on proxi-
mity-preserving dimension reduction techniques.

The Islands of Music interface [14] incorporates rythm descrip-
tors and employs self-organizing maps for visualizing music collec-
tions based on the metaphor of geographic maps in two-dimensional
space. One highly relevant extension of these maps is a browsable
3D landscape by Knees et al. [9], where tracks are clustered based
on content features. Hamasaki and Goto [6] propose Songrium,
a collection of visualization and exploration approaches. These
include the “Music Star Map”, a visualization of songs in a graph,
where placement of songs is based on audio similarity. Also, Lamere
et al. [10] presented a 3D interface (Search Inside the Music) based
on Multidimensional scaling techniques to visualize similarities
between tracks, where each item is represented as a single colored
item in the 3D space. Similarly, the Music Box visualization ap-
proach relies on principal component analyses to visualize tracks,
where song similarity is used to distribute tracks on a plane. The
visualization proposed in this work differs from these approaches in
the fact that we base the visualization on latent representations of
items within a heterogeneous graph that includes tracks, artists, al-
bums, genres, etc. Due to the applied graph embedding techniques,



Personalized music search based on graph embedding

proximities within the graph visualization are not restricted to sim-
ilarities between items of the same type (e.g., tracks) or similarities
based on a single set of features (e.g., audio features), but rather
capture the similarity of items of any type in the latent feature
space.

3 GEMSEARCH: PERSONALIZED MUSIC
SEARCH

In the following two sections, we present the Gemsearch system,
a first prototype for personalized explorative music search based
on latent representations of nodes of the musical ecosystem?. Gem-
search consists of two main components: the graph embedding and
retrieval engine that computes latent representations of items and
query results, and the client providing a search and visualization
interface which is described in Section 4.

3.1 Graph Embedding and Retrieval Engine

A music corpus can be modeled as a heterogeneous graph with
tracks, artists, album and tags as nodes and relationships as edges.
Using graph embedding techniques as described in the previous
section, a vector space with latent representations for each item
can be learned. Higher order proximities are preserved and hence,
distances in the embedding represent similarities between items.
This is very powerful because previously missing metadata is com-
pensated, and also heterogeneous items can be compared.

A common task for music discovery is to retrieve similar items
for one item which is given as an example. Here, simply the near-
est neighbors of this seed item within the embedding has to be
computed. Each node of the initial graph could possibly be used
as query and consequently also tags or artists for example serve
as seeding items. After retrieving similar results, a simple post
filtering allows to restrict the item type to only return tracks for
example. Moreover, multiple items can be combined to construct
complex queries which allows to express the desired outcome in a
fine granularity. To evaluate a given query on the embedding, only
a vector for the nearest neighbor search is required. This means that
the latent representation of each query term has to be combined
and could possibly be used as positive or negative example with
different weights of impact.

If user feedback is available, e.g., implicit through historic track
listening behavior or explicit positive feedback on items, the user
can be included into the system. In the graph, users are modeled
as graph nodes and for each feedback on music items an edge is
inserted between this item and the user. This improves the available
graph structure and therefore, may improve the embedding quality
(through collaborative filtering) and additionally makes it possible
to model a user’s preference on queries. After embedding, the user
itself has a latent representation in the same vector space with
all other items. Because proximities have been preserved, his/her
consumed and preferred items are positioned nearby this vector.
Constructing a query with the user and no additional seed items
retrieves general recommendations. For each user-initiated search
query, the user’s latent representation is added and hence, long-
term preferences partly influence the outcome. To limit this effect

2The prototype can be accessed at http://dbis-graphembeddings.uibk.ac.at
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to a certain margin, the user’s vector has to be downscaled.

Equation 1 formalizes the creation of a search vector g which is
evaluated to retrieve nearest neighbors on embedding fy. The short-
term query intension may be expressed by multiple graph nodes
X0, X1, ..., Xp and is influenced by general preferences of user u. Each
item (query nodes and user) is transformed with the embedding to
retrieve the latent representations. The final vector is then produced
by the weighted mean, where oy, + ... + ay, + oy = 1.

q = ax, * fo(vx) + ... + ax, * fo(vx,) + au* fo(vy) (1)
—— ——

user preference

query intension

For the creation of the graph underlying our approach, we rely
on the Spotify playlist dataset by Pichl et al. [16], containing 852,293
tracks crawled from public Spotify playlists. Graph embedding tech-
niques can only preserve proximities in their produced embeddings
which are represented by the initial graph. Therefore, we crawled
Last.fm tags® for the contained tracks to introduce user created se-
mantic information. These tags extend the feature set of tracks and
in addition, they enrich the available item descriptors which users
can use in their search queries. The resulting dataset is represented
as a graph containing undirected edges between the following item
types: user—track, track-tag, track—album, album-artist and artist-
genre. For the computation of latent representations of nodes via
graph embedding, we rely on the popular Deepwalk algorithm [15],
where we learn representations for all nodes in a 128-dimensional
vector space. The resulting latent representations provides means
for flexibly computing similarities between heterogeneous items
such as tracks, users or artists.

3.2 Search refinement

Gemsearch allows users to interactively explore the music space to
find new music. Therefore, a starting position for browsing through
the items has to be determined by eliciting the user’s current mu-
sical preferences. As can be seen in the top left corner of Figure 1,
a text input field (with autocompletion support) allows to select
multiple items from the dataset to construct a query that reflects
the user’s current preferences. Here, the search query for artist
“Jimi Hendrix” may return similar and suitable artists, tracks or tags.
In addition, the search result can further be restricted by adding
further search terms. In Figure 1, the tag “guitar” is entered and
combined with the first term.

Searching for music is not a single action where a user formulates
his information needs and then consumes the results. The search
can be seen as a process where query refinements are a constant
part of it. Therefore, it is necessary that users are not only able
to extend queries but are also supported with e.g. suggestions for
possible query terms for adjustments. The user should feel like
navigating through a virtual result space instead of jumping to
unconnected places after manually modifying requirements. In the
underlying latent vector space, any of the proposed items can be
used to further extend the query and hence, refine the search to
match current preferences more precisely. This means that any of

3https://www.last.fm/api/show/track getTags



Master thesis, 2018, University of Innsbruck

a guitar

quittar quitarz
——
Jimi Hendrix Cream Led Zeppelin

Derek & The Dominos.

Emerson, Lake & Palmer ‘The Black Crowes

Figure 1: Gemsearch query bar with autocomplete and list
results.

the proposed items which are retrieved after the initial query can
be used to further extend the query and refine the search.

For example, suppose that a user inspected his/her first results
of Figure 1 and the user’s search intention also matches “Jeff Beck”.
Then he/she can either consume songs directly from this artist or
add it to the current query. This will not limit new results to “Jeff
Beck” but will return items which are similar to both artists. Using
this technique, the user has not actively adapt the query through
reformulating it and still gets more precise results.

3.3 Model extension

In real world scenarios, the dataset represents a dynamic system,
constantly changing because new songs or users are added. New
data can either consist of new edges, e.g. new listening events
of users during the use of the system, but also of new vertices
when tracks or users are added. To reflect these changes in the
recommendations, this adaption has to be applied to the model.
Especially if initial data is available for new users, e.g. through
connecting with other services, a fast method is desirable to alleviate
the cold start problem such that the system can be used right away.
A naive approach could simply recreate the whole embedding from
scratch, but this is not scalable for bigger sets. To solve this issue,
we present an extension to the Deepwalk [15] algorithm which can
include additional graph structure after creating an initial model.
Random walk based embedding techniques are mostly online
algorithms [4][5] which can consume new walks during training
as they are produced. This property is very powerful in general
because for huge datasets, not all walks have to be generated in
advance or even be kept in memory. However, the probability dis-
tribution of random walks in node2vec is not uniform and precom-
puted before walk generation, based on the graph structure. This
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implies that neither edges nor vertices can be added or removed
after the initial computation because it would invalidate previous
transition probabilities.

On the contrary, DeepWalk does not impose restriction on the
distribution over random walks and therefore allows graph struc-
ture extensions in theory. The presented algorithm and reference
implementation does not offer this functionality, but uses word2vec
of Gensim [17] to compute the actual embedding. Using word2vec
in the backend makes it possible to store the current internal skip-
gram model, later restore it for further learning with new sentences
(walks) and additionally allows to extend the current vocabulary
(vertices) during runtime. Combined, the desired options are avail-
able to partially extend the existing graph and retrieve new embed-
dings.

Random Walk Path
& = o
T1
m & 53
T n T2
ﬁ/ o &
) TZ\& T2

! ) T1 T1

user track artist tag

T2 T1

Figure 2: Graph extension example with an excerpt of poten-
tial initial walks and extended walks after user U2 and edge
U2 — T2 was added.

To extend an existing embedding, two datasets are required:
added vertices and new random walks. To retrieve this set, first
the initial graph is extended by the new graph structure while the
system keeps track of modifications. In the next step, random walks
are generated to reflect the added data in the same way as the
initial walks. Here, only walks which contain new edges or vertices
have to be created. This new training data is only of a small size
compared to the initial data set and is proportional to the number
of added structures. Figure 2 shows an example music graph and
potential generated random walks for a windows size of 3. After
anew user U2 and an edge between this user and the track T2 is
added to graph, only three new walks needs to be generated for
representing these modification.

Then, the existing word2vec model can be loaded and extended
with the new nodes which initializes the embedded vectors with
random values for those indices. Finally, learning is continued with
the new random walks to retrieve an extended embedding which in-
cludes latent representations for added nodes and potential adapted
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vectors for existing nodes.

With this method, the graph and its embedding can be updated
with lower effort than relearning the complete model. However,
even small changes can influence the whole embedding and create
changed latent representations for each node. The scalability is
therefore limited because for big datasets, the new embedding may
impact all items contained in the graph which invalidates created
indexes. Furthermore, only graph structure can be extended but it
does not allow to modify or remove existing nodes or edges.

Gemsearch uses this live model updates to alleviate the cold
start problem for user profiles by connecting with existing Spotify
accounts. The official Spotify API supports the OAuth protocol with
different scopes, allowing access to, e.g., personal playlists, playing
history or saved tracks. To create a personal preference profile,
Gemsearch retrieves the user’s saved tracks as they may serve as
a strong indicator for preference. After a user has connected with
his/her account, the user’s music library is loaded and compared
with the current contents of the underlying graph. For tracks, artists,
etc. that are not yet contained in the underlying graph, we gather
the missing metadata from Spotify and user-curated tags describing
these items from Last.fm. After the data is collected, the graph is
extended with this new information to generate additional random
walks. In the next step, the existing Deepwalk model is expanded
and learned with the presented algorithm to compute and obtain a
new latent representation which finally replaces the existing one.

4 VISUALIZATION

The most common visualization for both recommendation and
search results is to display a list of items ordered by the predicted
relevance of the individual items for the user. This limits users
to only observing the sequential order of items and hence, a one-
dimensional view agnostic to distances between consecutive items.
With a latent feature space underlying the system (obtained through,
e.g., graph embedding techniques), similarities between arbitrary
items can be expressed which permits developing more advanced
interfaces. Through recent advances in browser technology, like
the availability of native WebGl, just-in-time visualizations of 3D
scenes can be created directly on websites without complex pre-
computations or add-ons.

Using dimension reduction methods, the computed high-dimen-
sional latent representations can be reduced to three dimensions,
allowing to directly visualize items while preserving proximity.
Here, we utilize principal component analysis to reduce the 128-
dimensional representation of items to a three dimensional space.
Instead of displaying a list of items, the recommended items can
now be visualized in a 3D scene. Each track, artist or album can
be positioned using its three-dimensional representation and can
hence be displayed as an interactive 3D object. The positions and
resulting distances reflect the relationships and proximities between
items within the music collection. Beside the traditional list view
for search results, the Gemsearch client visualizes the surrounding
items in a 3D WebGl scene as depicted in Figure 3. Using such an
interface does not only allow to express distance between items,
but, more importantly, it allows the user to explore and browse

Master thesis, 2018, University of Innsbruck
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Figure 3: Web client 3D view and player bar.

through the result space interactively. Mouse gestures allow for
exploring the virtual space and while navigating, additional items
are lazy-loaded into the scene.

The user may first use a keyword search to express his/her cur-
rent preferences (cf. section on Graph Embedding and Retrieval
Engine). Based on these criteria, the first search results are retrieved
and displayed in a 3D space. Beside the active manipulation of the
search query which was described in Section 3.2, the 3D scene pro-
vides an even more effective process of implicit refinement. The
most relevant search results are positioned around the center of the
screen. When exploring additional items further away, the user has
to opt for a direction in which to continue exploring. After inspect-
ing items based on their album covers or through listening to music
samples for tracks at the new position, the navigation direction can
be refined. If the user detects suitable items, the direction is correct;
otherwise the user will navigate in a different direction. This choice
of directions and moving within the virtual result space directly
translates to (implicit) query refinement.

It is crucial to simplify the inspection of single items such that
huge collections of music are explorable in reasonable time. We
use album covers as textures for 3D objects describing track and
album items and hence, also allow for visually inspecting node
textures as this has shown to be an efficient means for judging the
relevance of albums and tracks [12]. To provide detailed informa-
tion about selected items (e.g., artists of a given track, genres, etc.),
information from the underlying graph is retrieved and displayed.
Furthermore, the provide music samples for each track that allow
users to immediately consume newly discovered tracks.

As similar items are located in close proximity to one another
in the resulting space, distance-based clustering techniques can be
applied to represent accumulations of items as annotated clusters.
This allows users to decide whether a set of items might be of inter-
est by looking at the characteristics of the cluster and not having
to inspect the individual items contained in the cluster. However,
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zooming in into a cluster to inspect the individual contained items
is still possible. Figure 3 shows how clusters of similar items are
represented as single orange circles. On click, the contained items
are shown while all other elements are faded with transparency
to enhance the contrast. As items within a cluster are positioned
nearby, the scene is zoomed in without scaling the circle sizes to
avoid overlapping elements.

5 EXPERIMENTS

Estimating the quality of the presented approach is one of the key
challenges, because there exists no dataset which directly maps
search queries with user context to results. Even having a working
prototype client to test the system on real users, representative
user studies require fairly big and diverse user bases. The test cases
need to allow the users to estimate the results without being biased
through available options or the test environment. A/B tests can
model fair and solid results but require scopes in terms of number
of users and participation which are only available on commercial
platforms. Therefore, the common approach in research is to make
use of crawled playlists which were manually created by users. As
presented in [8], these evaluations are comparable to user stud-
ies. Additionally, offline experiments can be easily repeated with
adapted implementations and input parameters which helps during
implementation and optimization to observe and benchmark the
outcome.

Manually curated playlists can be easily obtained from public
platforms. They contain multiple song tracks sharing some common
characteristics and are usually labeled with a short text to describe
its content. In addition, they are associated to the user who has
chosen the collection. In a broader sense the title of playlists can
therefore be seen as queries and the contained tracks as the desired
personalized results.

As there is no direct test dataset for Gemsearch, we relied on
playlists to evaluate two aspects of the system. One aspect is the
general embedding quality in respect to personal preferences. Here
we transform the playlists to historic listening data and predict
one hidden track per user. This evaluation is further described
in Section 5.2. To incorporate the query mechanism with seeding
elements, we use the playlist title and contained tracks as ground
truth. As then explained in Section 5.3, the playlist evaluation tries
to predict the tracks based on user context and playlist name.

5.1 Dataset and graph generation

The initial dataset was constructed from crawled Spotify playlists
by Pichl et al. [16]. This set consists of playlists with hashed user
id and multiple tracks with artist and audio features. To enrich the
available query terms and gather additional graph structure, we
extended the dataset with socially curated tags on tracks crawled
from Last.fm * and artist genres from Spotify.

Yhttps://www.last.fm/api/show/track getTags
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Table 1: Node count by type

Type Count
Playlists 21,336
Users 1,180
Tracks 852,293
Artists 110,377
Tags 395,587
Albums 189,174
Genres 1,520

Total nodes 1,571,467

Table 2: Edge count by types (undirected)

Type Count
Playlist-User 21,323
User-Tracks 1,662,605
Track-Album 852,293
Track-Artists 1,027,918
Track-Tags 9,341,603
Artist-Genre 148,705
Total edges 13,054,447

Because both the playlists and Last.fm tags are unfiltered, user
produced data, preprocessing was necessary. The playlist evaluation
has to extract query terms from playlist titles. Hence, all playlists
without at least one valid term were removed. We defined the small-
est meaningful term to consist of either at least three alphanumeric
characters or two digits (e.g. the term "80" could possible label
tracks which were produced in the 1980s). Assuming that a playlist
with less than four tracks represents only an incomplete list and
therefore no processable information, this data was removed.

To match same tags on different tracks, the tag names are trans-
formed to lowercase and special characters are removed. All tags
which did not match the length requirement for query terms or
with less than five user assignments on Last.fim are discarded.

Album and track titles from Spotify always satisfied those re-
strictions.

In total, 1,571,467 vertices and 13,054,447 are contained in the
resulting graph after preprocessing which is further listed in Table
1 and 2. Within the dataset, the mode of the number of tracks in
playlists is 12.

5.2 Track recommendation evaluation

The Gemsearch system constructs queries by combining multiple
seeding elements with a potential user context to retrieve recom-
mendations. Without seeds, the user node alone can be used to
query for recommendations which are only based on his/her long-
term preferences. This allows to perform a classic evaluation on
user track recommendations, where implicit positive only feedback
is used to determine items that a user may perform a certain action
on. To reconstruct those past events, we use the playlists to produce
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historic track listening data, which is split randomly into a training
(80%) and test set (20%). Users with less than 8 tracks in the training
set are removed because no meaningful profile could be created.
Using the training data, a new graph is generated with edges be-
tween user and tracks, as well as all available metadata like artist,
genres, album and tags. With Deepwalk an embedding is learned
and then for each user, recommendations which are relevant and
new to the user are calculated and compared with tracks in the test
set of this user.

To retrieve those tracks, first the user serves as query to retrieve
nearest neighbors of its latent representation in the embedding.
Then these items are iterated in ascending order by their distance
to filter all other items which are not tracks and to remove known
samples from the user’s training set. This is continued until the
required amount of k elements is found and finally the results are
returned.

To measure the performance precision@10 and recall@10 are
computed and compared against five baseline scores using MyMedi-
aLite [3]. Without personal context, the Random method returns
random items and the MostPopular predicts tracks with the most
overall listening counts. Furthermore, we conducted three collabo-
rative filtering methods: Two state-of-the-art matrix factorization
algorithms, Weighted Regularized Matrix Factorization (WRMF) and
Bayesian Personalized Ranking Matrix Factorization (BPRMF), as
well as UserKNN, a user-based collaborative filtering method that
predicts k-nearest neighbor’s tracks.

5.3 Playlist evaluation

To predict tracks of playlists based on their playlist title, two steps
are required. First, a query must be constructed from the title and
then this query can be used to retrieve relevant recommendations.
For example, suppose the playlist title "Tommy’s best of 80s rock
classics" which may contains a personal best-of collection of rock
songs which were produced in the 1980s. Analyzing the title multi-
ple different queries are possible. As the embedding contains tags,
the transformation could extract the tags "80s", "rock”, "classics"
and "rock classics". But there may also exist an album with the
name "80s rock classics" which would potentially result in different
recommended tracks. For this task of query term extraction, the
full-text search capabilities of Elasticsearch’ are used. Having such
high-level full text search, fuzzy matching and proximity queries
contribute to match terms even if they are not syntactical equiva-
lent.

Before running the evaluation, the total set of playlists is ran-
domly split into a training (80%) and a test set. Each user-playlist
relation in the training set is used to create user-track edges in
the graph which models the user preferences. With all available
metadata, the graph is completed and then the embedding is com-
puted using Deepwalk. In the evaluation phase, the title for each
playlist in the test set together with the user context is combined
to recommend potential relevant tracks. Those results are matched
against the actual playlist tracks. For the query extraction, terms
in the title must be matched against known item names. In the

Swww.elastic.co/products/elasticsearch
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training phase, all graph nodes except users and playlists are in-
serted into the Elasticsearch database and are then available by
their title as query terms. Different techniques to extract and then
combine multiple items for a final search vector are evaluated. The
following list explains these methods and illustrates the possible
extracted query on the example playlist title "Tommy’s best of 80s
rock classics" which was created by user uy:

one query term The first item which is returned by the search
for the playlist title is used as single query term.
Produces query: [tag:"rock classic"]
one query term with user Same as "one query term" but the user
is added as query term which is scaled with ;, = 0.3 to limit
the influence of long-term preferences.
Produces query: [tag:"rock classic” * 0.7 + user:uy * 0.3]
first two query terms The first two results (query extension) from
the text-search for the playlist title are used to construct the
query.
Produces query: [tag:"rock classic" * 0.5 + tag:"80s" * 0.5]
user Only the user is used as query term.
Produces query: [user:uy]
random Random tracks are returned
Produces query: [random item]

To evaluate the performance, information retrieval measure-
ments precision@k and recall@k are used. In addition, the metric
leastOneHit@k is calculated which represents the percentage of
playlists which had at least one valid hit at k proposed tracks. For
baseline comparison, a random track recommender returns k ran-
dom items for each playlist.

6 RESULTS AND DISCUSSION

As it can be seen in Table 4, Gemsearch can be used to produce
personalized track recommendations which perform better than
non-personalized methods and state-of-the-art matrix factorization
techniques. For the task of track recommendations per user, only the
UserKNN method achieved slightly better results than our approach.
Because the test-listening data of this evaluation was constructed
with playlist tracks, it confirms that the content of playlists are
influenced by personal preferences.

Table 4: Track recommendation results

Recommender Precision@10 Recall@10

UserKNN 0.10468 0.02010
Gemsearch 0.09469 0.00909
WRMF 0.02747 0.00192
MostPopular 0.01872 0.00175
BPRMF 0.01044 0.00088
Random 0.00017 0.00001

The results of the playlist recommender are listed in Table 3.
Compared with the random track recommender, the performance
does clearly outstand. Furthermore, methods relying on seeding
items perform better than the track recommendations which are
only based on user preferences. The best scores for precision and re-
call are achieved when only one query term without user context is
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Table 3: Playlist recommendation results

Recommender Method

Precision@1 Precision@10 Recall@1 Recall@10

Full dataset

one query term 0.11669 0.10014 0.00854 0.07117
first two query terms 0.11307 0.10101 0.00814 0.07140
one query term with user 0.08988 0.07637 0.00269 0.01433
user 0.01087 0.00937 0.00024 0.00208
random 0.00000 0.00014 0.00000 0.00002
Playlists with only one artist

one query term 0.55280 0.46765 0.04258 0.34096
one query term with user 0.53981 0.45963 0.04140 0.33506
first two query terms 0.50706 0.45082 0.03852 0.32804
user 0.00169 0.00147 0.00018 0.00106
random 0.00000 0.00014 0.00000 0.00002
Playlists with multiple artists

one query term 0.10456 0.07758 0.00495 0.03391
one query term with user 0.09897 0.07896 0.00464 0.03408
first two query terms 0.08477 0.06880 0.00391 0.02920
user 0.01979 0.01863 0.00038 0.00320
random 0.00000 0.00014 0.00000 0.00002

used. The experiments can not benchmark the query extraction and
item retrieval separately. Tests on more complex query creations
did not succeed because playlist titles are rather short and mostly
only one query term is extracted. Therefore, not the full capacity
of the Gemsearch query facilities are used in this evaluation.

Analyzing playlists without hits makes it clear that many playlist
names are noisy and do not describe the contained tracks which
makes it hard to predict the content. Furthermore, about 48% of
the playlists contain tracks only from one artist. A nearer inspec-
tion shows, that playlists are often used to store albums or best-of
collections of artists. As a consequence, pure text-based methods
on the same dataset can produce better results [2]. In contrast, the
proposed system Gemsearch is designed to discover new music
and should therefore retrieve different sets of recommendations
for each user. To reflect this desired property in the test data, the
playlists are split into two disjunctive sets based on whether they
contain tracks from multiple artists or not.

The results for these two datasets, listed in Table 3, show that for
playlists with tracks from only one artist the overall performance is
much better but also the user as part of the query does not improve
the results. It seems that users assign more meaningful titles for such
lists. Considering that the playlists were created by Spotify-Users,
we suspect that users abused those lists to simply mark albums or
artists for offline usage on their devices. In addition, the Spotify
client currently supports to add all songs of an album to a new
playlists. For this newly created list, the concatenation of the album
and the artist name gets assigned as title. Many users probably keep
this auto generated name and list of tracks, which makes it easier
to predict the content but clearly also eliminates the influence of
general user preferences on this collection. On the contrary are

playlists with a diversity of artists. All recommender methods are
less efficient on this dataset except the recommendations which
are only based on the user context. Both the query extraction and
prediction of tracks is harder because the data is less structured.
Using one single seeding element is still the best approach for short
results lists but as soon as more items should be retrieved (higher
k) the long-term preferences improves the scores (precision@10
and recall10 values for "one query term with user" are highest).

Analyzing the percentage of playlists with at least one hit in
Figure 4 confirms that personalized strategies are only suitable
for longer result sets. In order to predict one single item within
playlists, it is more efficient to propose a "classic" example for the
extracted term because it is more likely to be contained. When the
user is added as additional search term to the query, most likely
no direct neighbors of the initial term are retrieved anymore. This
prevents the retrieval of the most popular "classic" example but is a
desired effect for music exploration, because also items on the long
tail are retrieved.
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Figure 4: Percentage of playlists with at least one hit
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Table 5: Playlist recommendation performance on graphs
with less structural data

Subset with item types Precision@10
Tracks, Artists, User 0.03123
Tracks, Artists, User, Tags 0.03883
Tracks, Artists, User, Genres 0.04164
Tracks, Artists, User, Albums 0.06842
Tracks, Artists, User, Tags, Albums 0.07685
Tracks, Artists, User, Genres, Albums 0.08017
Tracks, Artists, User, Tags, Albums, Genres 0.08115

As expected, more structural data provided through the graph
creates better embedding and therefore more meaningful results.
Table 5 contains the performance measured with precision@10 on
running the playlist evaluation with the extraction method "one
query term". Each execution was performed on different subsets of
the dataset which contained only the specified item types. Again,
only playlists which contain tracks from multiple artists are in-
cluded. The inclusion of album connections is responsible for the
greatest performance even though most playlists were removed
which probably only contained albums tracks. Tags only slightly
improve the results in this evaluation but could have a stronger
impact on the real use of this system because it allows to formulate
queries in more natural way.
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Gemsearch produces meaningful personalized recommendations,
but the effect in combination with queries is currently not as strong
as expected. It is not possible to explain whether the current em-
bedding strategy or query computation lacks this personalization
or if the evaluation with playlist data can not reflect the desired
outcome. Especially the combination of flexible search facilities
and 3D visualizations which is one of the key strength of our work
could not contribute in this evaluation.

7 CONCLUSION

This work presented an approach to use graph embedding tech-
niques to create a low dimensional vector space of music data. This
embedding is used to create query-based music recommendations
and evaluated against playlist track predictions. Combined with a
3D representation of the result items it improves the way how user
find and explore new music. We believe that the proposed method
is not limited to music and may be also used in different domains
where application data can be represented as graph but metadata
for single items is sparse.

There is still potential for future work to improve the embedding
itself and the query mechanism. Weighted which are for example
possible in node2vec[5] seems to be a promising approach to im-
prove the embedded proximities in early tests. With them it could
even be possible to include audio features as graph nodes in order
to introduce audio similarities. However, this would make model
extensions more difficult. A user study is eligible to further evalu-
ate the performance on multi term queries and to understand how
users may use such flexible search systems.
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ABSTRACT

Due to the rise of music streaming platforms, huge collections
of music are now available to users on various devices. Within
these collections, users aim to find and explore songs based
on certain criteria reflecting their current and context-specific
preferences. Currently, users are limited to either using search
facilities or relying on recommender systems that suggest suit-
able tracks or artists. Using search facilities requires the user
to have some idea about the targeted music and to formulate
a query that accurately describes this music, whereas recom-
mender systems are traditionally geared towards long-term
shifts of user preferences in contrast to ad-hoc and interactive
preference elicitation. To bridge this gap, we propose geM-
search, an approach for personalized, explorative music search
based on graph embedding techniques. As the ecosystem
of a music collection can be represented as a heterogeneous
graph containing nodes describing e.g., tracks, artists, genres
or users, we employ graph embedding techniques to learn low-
dimensional vector representations for all nodes within the
graph. This allows for efficient approximate querying of the
collection and, more importantly, for employing visualization
strategies that allow the user to explore the music collection in
a 3D-space.

ACM Classification Keywords

H.3.3. Information Search and Retrieval: Information filter-
ing; H.4.2. 2. Information Systems Applications: Types of
Systems: Decision Support

Author Keywords
music information retrieval, search, recommender systems,
visualization, graph embedding

INTRODUCTION

In recent years, music streaming platforms have become a cen-
tral means for listening to music as these allow users to access
huge collections of music. This evolution has also influenced
the way users search and explore music. For instance, the
streaming platform Spotify currently serves 140 million active
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users and provides a collection of more than 30 million songs’
(as of June 2017). Consequently, the primary objective for
users has shifted from retrieving specific songs to finding and
ultimately exploring songs that match certain criteria reflecting
the user’s current preferences and context [8, 5].

Currently, two paradigms allow users to explore large mu-
sic collections: search and recommender systems. Utilizing
naive search approaches based on simple attribute matching
requires the collection data to be fully annotated with meta-
data. When relying on keyword search facilities, the user is
required to have some idea of his/her current preferences and
has to be able to formulate a query that actually describes these
preferences well. More advanced search facilities are based
on content similarities of items (aka “find similar artists or
songs”) and are rarely personalized. Especially data sparsity
and the lacking ability for comparing heterogeneous items
(tracks, artists, albums, etc.) makes it hard for such systems to
succeed. In contrast, recommender systems propose items that
might be suitable for the user (based on some collaborative
filtering approach or more complex models. While recom-
mender systems do not require the user to be able to formulate
his/her current preferences, the user also is not able to directly
influence recommendations by stating e.g., a starting point for
his/her explorative search for music matching his/her current
preferences (except for feedback mechanisms like relevance
feedback and explicit ratings that influence the user model in
the long term).

Only very few approaches like the one proposed by Chen
et al. [1] allow the user to specify his/her current needs and
preferences in an abstract manner, where the returned results
are jointly based on the query (the user’s current information
need) and the user’s personal music preferences. However,
there is still a substantial lack of user interfaces that provide
dynamic, exploration-driven visualization strategies for large
collections of music.

Therefore, we propose the geMsearch system to bridge this
gap in explorative music search. In particular, we propose
to use graph embedding techniques for computing latent rep-
resentations of items contained in the graph, such as tracks,
users, artists, genres or acoustic features of tracks. Using such
graph embedding techniques [14], a low-dimensional latent
vector representation is learned for every node. These firstly
allow to create advanced search facilities as search queries can
be encoded in the same vector space. As a result, not only
exact results can be retrieved, but also similar items and hence,

1http ://press.spotify.com/us/about



exploiting previously unknown similarities between hetero-
geneous items that can be utilized to retrieve diverse search
results. Secondly, the obtained vector representations can
be exploited for advanced visualization paradigms enabling
explorative music search.

This work presents a preliminary study and visualization pro-
totype based on latent representations obtained by graph em-
bedding techniques. In contrast to traditional list-based aggre-
gations of search results that provide a one-dimensional view
of the retrieved items, we exploit the low-dimensional vector
representation to generate 3D representations of the suggested
items, allowing users to visually explore the music collection
in a 3D-space. The user is able to specify a starting point
for his/her exploration of the musical 3D-space by browsing
through this space, the query is implicitly refined and the user
is provided with further suitable tracks and artists.

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe related work. Section 3 proposes a visu-
alization for explorative music search based on graph embed-
dings and presents the proposed prototype. Section 4 sums up
key aspects and details future work.

RELATED WORK

For the task of building visualizations for music exploration,
there are a number of relevant approaches, mostly based on
proximity-preserving dimension reduction techniques.

The Islands of Music interface [10] incorporates rythm descrip-
tors and employs self-organizing maps for visualizing music
collections based on the metaphor of geographic maps in two-
dimensional space. One highly relevant extension of these
maps is a browsable 3D landscape by Knees et al. [6], where
tracks are clustered based on content features. Hamasaki
and Goto [4] propose Songrium, a collection of visualization
and exploration approaches. These include the “Music Star
Map”, a visualization of songs in a graph, where placement
of songs is based on audio similarity. Also, Lamere et al. [7]
presented a 3D interface (Search Inside the Music) based on
Multidimensional Scaling (MDS) techniques to visualize sim-
ilarities between tracks, where each item is represented as
a single colored item in the 3D space. Similarly, the Music
Box visualization approach relies on Principal Component
Analyses to visualize tracks, where song similarity is used
to distribute tracks on a plane. Stober et al. [13] also rely
on MDS, however, utilize bisociative lens distortions to sup-
port serendipitous music discovery in the MusicGalaxy UL
The visualization proposed in this work differs from these
approaches in the fact that we base the visualization on latent
representations of items within a heterogeneous graph that
includes tracks, artists, albums, genres, etc. Due to the applied
graph embedding techniques, proximities within the graph
visualization are not restricted to similarities between items
of the same type (e.g., tracks) or similarities based on a single
set of features (e.g., audio features), but rather capture the
similarity of items of any type in the latent feature space.

Recently, graph embedding techniques have also been intro-
duced to the field of music information retrieval. Chen et
al. [1] utilize graph embeddings for realizing a query-based

music recommender approach that is similar to the approach
presented in this paper. A similar approach has also been
utilized for playlist recommendation [2] or text-based music
retrieval based on playlists [3]. However, these approaches do
not provide a user interface for the exploration of new music.

GEMSEARCH: EMBEDDING-BASED VISUALIZATION

In the following section, we present the geMsearch system, a
first prototype for personalized explorative music search based
on latent representations of nodes of the musical ecosystem?.
geMsearch stands for graph embedding based music search
and consists of two main components, which we will detail
in this section: the graph embedding and retrieval engine that
computes latent representations of items and query results, and
the client providing a search and visualization interface.

Graph Embedding and Retrieval Engine

For the creation of the graph underlying our approach, we
rely on the Spotify playlist dataset by Pichl et al. [12], con-
taining 852,293 tracks crawled from public Spotify playlists.
To enrich the available item descriptors for improved query
performance, we also add Last.fm tags® for the contained
tracks. The resulting dataset is represented as a graph con-
taining undirected edges between the following item types:
user—track, track—tag, track—album, album-artist and artist—
genre. For the computation of latent representations of nodes
via graph embedding, we rely on the popular Deepwalk al-
gorithm [11], where we learn representations for all nodes in
a 128 dimensional vector space. The resulting latent repre-
sentations provides means for flexibly computing similarities
between heterogeneous items such as tracks, users or artists.

geMsearch allows users to interactively explore the music
space to find new music. Therefore, a starting position for
browsing through the items has to be determined by eliciting
the user’s current musical preferences. As can be seen in the
top left corner of Figure 1, a text input field (with autocomple-
tion support) allows to select multiple items from the dataset
to construct a query that reflects the user’s current preferences.
Here, the search query for artist “Jimi Hendrix” may return
similar and suitable artists, tracks or tags. In addition, the
search result can further be refined by adding further search
terms. In Figure 1, the tag “guitar” is entered and combined
with the first term. To create a search vector which is evaluated
to retrieve nearest neighbors as search results, the mean item
representation of these query terms is computed. The scaled
user’s latent representation is finally added to this vector and
hence, long-term preferences partly influences the outcome.
The resulting vector is then used to retrieve the most similar
items from the graph as search results.

Visualization

The most common visualization for both recommendation
and search results is to display a list of items ordered by the
predicted relevance of the individual items for the user. This
limits users to only observing the sequential order of items and

2The prototype can be accessed at http://dbis-graphembeddings.
uibk.ac.at

3https://www.last.fm/api/show/track.getTags
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Figure 1. geMsearch query bar with autocomplete and list results.

hence, a one-dimensional view agnostic to distances between
consecutive items. With a latent feature space underlying the
system (obtained through, e.g., graph embedding techniques),
similarities between arbitrary items can be expressed which
permits developing more advanced interfaces. Through recent
advances in browser technology, like the availability of native
WebGl, just-in-time visualizations of 3D scenes can be cre-
ated directly on websites without complex precomputations
or add-ons. Using dimension reduction methods, the com-
puted high-dimensional latent representations can be reduced
to three dimensions, allowing to directly visualize items while
preserving proximity. Here, we utilize principal component
analysis to reduce the 128 dimensional representation of items
to a three dimensional space. Instead of displaying a list of
items, the recommended items can now be visualized in a 3D
scene. Each track, artist or album can be positioned using its
three-dimensional representation and can hence be displayed
as an interactive 3D object. The positions and resulting dis-
tances reflect the relationships and proximities between items
within the music collection. Beside the traditional list view for
search results, the gemSearch client visualizes the surrounding
items in a 3D WebGl scene as depicted in Figure 2. Using such
an interface does not only allow to express distance between
items, but, more importantly, it allows the user to explore and
browse through the result space interactively. Mouse gestures
allow for exploring the virtual space and while navigating,
additional items are lazy-loaded into the scene.

The user may first use a keyword search to express his/her
current preferences (cf. section on Graph Embedding and
Retrieval Engine). Based on these criteria, the first search
results are retrieved and displayed in a 3D space, where the
user should feel like navigating through a virtual result space
instead of jumping to unconnected items. In the underlying
latent vector space, any of the proposed items can be used to

further extend the query and hence, refine the search to match
current preferences more precisely. Besides this active manip-
ulation, the 3D scene provides an even more effective process
of implicit refinement. The most relevant search results are
positioned around the center of the screen. When exploring
additional items further away, the user has to opt for a direc-
tion in which to continue exploring. After inspecting items at
the new position, the navigation direction can be refined. If the
user detects suitable items, the direction is correct; otherwise
the user will navigate in a different direction. This choice of
directions and moving within the virtual result space directly
translates to (implicit) query refinement.

It is crucial to simplify the inspection of single items such that
huge collections of music are explorable in reasonable time.
We use album covers as textures for 3D objects describing
track and album items and hence, also allow for visually
inspecting node textures as this has shown to be an efficient
means for judging the relevance of albums and tracks [9].
To provide detailed information about selected items (e.g.,
artists of a given track, genres, etc.), information from the
underlying graph is retrieved and displayed. Also, we provide
music previews for each track that allow users to inspect and
immediately consume newly discovered tracks.

As similar items are located in close proximity to one another
in the resulting space, distance-based clustering techniques can
be applied to represented accumulations of items as annotated
clusters. This allows users to decide whether a set of items
might be of interest by looking at the characteristics of the
cluster and not having to inspect the individual items contained
in the cluster. However, zooming in into a cluster to inspect
the individual contained items is still possible. Figure 2 shows
how clusters of similar items are represented as single orange
circles. On click, the contained items are shown while all other
elements are faded with transparency to enhance the contrast.
As items within a cluster are positioned nearby, the scene is
zoomed in without scaling the circle sizes to avoid overlapping
elements.

a B

Track Artist = ST GRAPH

Search...

Figure 2. Web client 3D view and player bar.



To alleviate the cold start problem for user profiles, users can
connect with their Spotify account. The official Spotify API
supports the OAuth protocol with different scopes, allowing
access to, e.g., personal playlists, playing history or saved
tracks. To create a personal preference profile, geMsearch
retrieves the user’s saved tracks as we argue that saved tracks
may serve as a strong indicator for preference. After a user
has connected with his/her account, the music library is loaded
and compared with the current contents of the underlying
graph. For tracks, artists, etc. that are not yet contained in the
underlying graph, we gather the missing metadata from Spotify
and user-curated tags describing these items from Last.fm.
After the data is collected, the graph is extended with this new
information. In a next step, latent representations have to be
computed in case of new items or updated in case of items
that are affected by the newly added information. Deepwalk
uses short random walks to model the graph structure with
an uniform distribution over nodes. Therefore, neither the
complete graph structure, nor all nodes have to be known
to the algorithm initially. This implies that additional nodes
and edges can be added on-the-fly to continue learning and
extending existing embeddings without the need to relearn the
complete model from scratch when adding new users or items.

CONCLUSION AND FUTURE WORK

In this work, we presented geMsearch, a preliminary prototype
for personalized exploration and search of music collections.
We exploit graph embedding techniques to compute a low-
dimensional vector space representation of the music collec-
tion and the contained items. This allows for query-based,
personalized exploration of music collections. Particularly,
our approach provides users with a 3D representation to yield
a visual exploration of new music; allowing the user to browse
through search results and the full collection, where the dis-
tance of items (tracks, artists, genres) in the displayed graph
corresponds to item similarity. Please note that the browsing
through the 3D-space is not restrained to search results, the
user’s query is a mere definition of a starting point for brows-
ing for the full collection graph and hence, query refinement.

We believe that the proposed method is not necessarily limited
to music and may also be used in different domains, where
data can be represented as graph and metadata for single items
is sparse.

As for future work, we aim to further extend the prototype by
improving the visualization performance and updating user
preferences on-the-fly. For computing the user profiles, we
aim to look into incorporating listening histories and create
more comprehensive user profiles. Also, we aim to lay a
particular emphasis on interaction aspects in the prototype
by, e.g., allowing the user to up- or downvote certain tracks
explicitly. We further aim to perform a user-centric evaluation
of the system.
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Appendix

A.1 Implementation Details

This appendix gives a general overview about the Gemsearch prototype
which was implemented during the master thesis. The implementation
can be structured into two main components. As it can be seen in fig-
ure A.1, the data management, graph embedding and recommendation
computation is implemented as a Python application. With a REST
interface these services are exposed and decoupled from the second com-
ponent, the web client, which provides a user interface.

User-Interface Web-Client
Layer

|4

1|

Computation Server

Layer

REST Interface

Python Application

Deepwalk

Persistence
Layer

MongoDB
Document Embedding
store

Figure A.1: Main architecture overview

A.1.1 Python application

The actual recommender for computing and storing the required data is
implemented as a Python application. We have chosen Python because
there are many packages for data processing and machine learning. In
addition, also the reference implementation of Deepwalk and the tool
word2vec are written in Python. To achieve reasonable runtime per-
formance, big data structures are stored and accessed with the Python



package numpy' and matrix computations are performed with scipy?
which both rely on native implementations.

A.1.2 Data management

The main data source for Gemsearch is the Spotify API where Pichl et
al. [1] has already crawled a big dataset which consists of 21,336 playlists.
Because this data is stored as JSON, the NoSQL document store Mon-
goDB? is used to store all crawled data. This makes it easy to create
data subsets for testing, performing statistical analyses and retrieving
metadata to enrich the search results. Synchronized user music libraries
from the Spotify connector are also stored here.

For embedding and evaluation, required data is extracted from Mon-
goDB and stored as CSV files in an intermediate step. This makes is
easier to process or split data and repeat experiments with same sub-
data inputs. After potential training-test splits are applied, the music
graph is constructed. When adding new data to the graph, a mapping
for item ids is applied which makes sure that each node is identified by
a unique unsigned integer id. These continuous ids are required for the
graph embedding algorithms as input and later to transform an embed-
ding index back to the original item. Additionally, they make sure that
same items, e.g. text equal tags, are represented as single nodes in the
graph.

The final graph is represented as a file in the edge list format. Each
line of this file represents an edge between two integer graph node ids
which are separated with whitespace. If the graph embedding algorithm
supports weighted edges (e.g. node2vec), a third value can be used to
specify the weight as float number. Deepwalk uses this file as input and
produces an embedding file as output. This file contains one line per
graph node to represent its latent representation. The Gemsearch rec-
ommender can load those files and stores the embedding as one single
array internally. Using the previously created lookup between embed-
ding index and object id, the representation can be transformed into
both directions. Having all item vectors in one single array allows fast
and efficient access during runtime which is especially important for the
nearest neighbors search.

The computation of recommendation is performed on an embedding
with 126 dimensions. This enables highly precise results with accept-
able runtime performance. However, the 3D visualization requires rep-

"http://www.numpy . org
’https://www.scipy.org
3https://www.mongodb. com

II



resentations in three dimensions such that items can be arranged in the
scene. For this purpose, we apply PCA on the high dimensional embed-
ding to reduce its dimension to three. In the 3D scene, the clients first
evaluates the user query on the 126-dimensional embedding to retrieve
the most relevant result item. This item is displayed in the scene and
then additional results which are around that point are retrieved from
the 3D embedding.

FEach item which has a name, except playlists and users, are inserted into
a Flasticsearch® full-text index. For the evaluation based on playlists,
this service is used to extract query terms from the playlist title. Also,
the client makes use of this index service to provide an autocomplete
function for users while formulating queries. The service takes multiple
keywords as input and returns the ids of items with the most similar
names.

A.1.3 Computation of recommendations

The interface for recommendations takes a list of object ids as input
and returns items ordered by the similarity to this input. Any item of
the graph can be used as seeding element. Optional the weights are
assignable for each item to specify positive, negative and exceptional
items. By default, each item is weighted equally as positive seeding el-
ement. To create personalized results, the user can either be specified
with its ID as additional seeding item or also passed as optional param-
eter where the system uses defaults weights for the scaling (a,, = 0.3).
To create a query vector, the latent representation for each object id
is fetched and combined as described in equation 1 of the ”Personal-
ized music search based on graph embedding” paper. Then the cosinus
distance is computed to each item within the embedding to retrieve
nearest neighbors. Ordered by distance to the search vector (similar-
ity), this node indices are traversed and resolved with a lookup to the
actual item object. In this step, optional element type filters (e.g. they
restrict results to tracks) remove unwanted items. During this traversal
the pagination is applied and stopped, as soon as the necessary number
of items are found. Finally, metadata like album covers and preview
URLs are fetched from the document store and attached to the item
descriptors. This final set is returned as result.

A.1.4 REST API

The REST-API provides access to the recommendation service via the
HTTP protocol. At server startup, the whole embedding is loaded into

‘https://www.elastic.co
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memory and then shared between multiple requests to ensure fast re-
sponse times. For the prototype, a Nginx web server forwards API
requests via uWSGI to the Python application. Each request is handled
in a separate thread to execute computations in parallel.

The most important REST endpoints are listed as follows:

/api/query
Returns a list of similar items to the given seeding elements. The
computation is performed on the embedding with 128 dimensions.

Available query parameters:

e ids list of object ids which should be used as seeding items

types list of item types to restrict the returned items

limit number of elements to return

offset number of elements to skip (used for pagination)

user optional user id to personalize results

/api/items_near_viz

Returns a list of item-clusters which are around the given 3D co-
ordinate. The computation is performed on the embedding with
three dimension. This is used to lazy load additional items into
the 3D scene. Each cluster consists of a 3D center position and
contained elements. In addition, the total bounding box of all re-
trieved items is attached so that potential clients can adapt their
visible scene to visualize all items at once.

Available query parameters:

e vec 3D coordinate to retrieve nearest neighbors for

types list of item types to restrict the returned items

ltmit number of elements to return

offset number of elements to skip (used for pagination)

minClusterDistance minimum distance between items. All re-
sult items which are in a closer distance to one another are
grouped into a cluster.

/api/suggest/<term>
Returns suggested query term items to autocomplete the given
term. Those items may be used to extend a query.

v



/api/object/<id>
This endpoint returns all available metadata for the given item uid.

/api/neighbors/<id>
Returns all neighbors with attached metadata for the given item
id which are connected via edge in the graph. This allows to fetch
the artist, genre and tags for a given track for example.

A.1.5 Webclient

The implemented Webclient makes it possible for users to formulate
queries and explore recommendations. Without the need for an installa-
tion or additional setup, the web application has many advantages over
traditional desktop applications. TypeScript®, a programming language
superset of JavaScript, was chosen for the implementation because it
provides static type checking during compilation. Created and main-
tained by Microsoft it also enables strong autocomplete suggestions in
e.g. their editor VS CodeS which improves the development process.
The JavaScript framework React” helps to maintain the client state and
having a virtual DOM enables to program on a more abstract level as
no direct DOM manipulations have to be applied. The whole client
is a standalone application and the communication with the Python
APT is done via REST interface to retrieve search results and metadata.
Hereby both components are independent and additional or different
clients could possibly be introduced.

Beside the list view, results can also be explored in a 3D scene where
each item is represented as a single interactive object. For performance
reasons, this scene is rendered in a canvas element using WebGL which
is hardware accelerated on most devices. WebGL has currently many
crossbrowser issues in different browsers and requires writing shader
codes for simple visualizations. The JavaScript library ThreeJS® fixes
this issues with a common API and simplifies the development with
many utility methods.

For exploring the search results, users can modify the scene camera
position using their mouse and navigate through the 3D space. The
whole embedding is too big as it could be transferred completely to the
client. Therefore, only the most accurate query results are returned and
additional items are loaded step by step with Ajax requests. After each

Shttps://www.typescriptlang.org
Shttps://code.visualstudio.com
"https://reactjs.org/
Shttps://threejs.org



position change, the camera direction is unprojected to get the focused
3D position. Having the new center, additional elements can be queried
and added to the existing scene. To limit the required computational
and memory resources, the maximum amount of displayed elements is
limited. After a fixed threshold previous items are disposed when new
items are added to the scene.

A.1.6 Spotify Connector

As described in Section 3.3 ”Model extension” in the ” Personalized mu-
sic search based on graph embedding” paper, a Spotify account can be
used to get personalized recommendations. When a user connects, access
to the username and the personal music library is granted. The OAuth
protocols allows to retrieve this data as a third-party application with-
out knowing the user’s login credentials. Only a token is transmitted
which authorizes API request for a limited time.

After the user has connected, it is checked if he is already known to
the system. For new users, the token is send to the server in order to
synchronize the music library. In the database this user data is only
identified by the hash of the username and prevents backtracking of
personal information.

Besides the API there are two microservices on the server which execute
long running tasks and prevent to block resources for further requests:

e The Crawler service watches the database for new tracks which
are inserted through the music library synchronization. It makes
sure that all necessary metadata is available to be added into the
graph. For new items, the track data and artists are crawled from
Spotify and tags for tracks are retrieved from Last.fm. The hereby
collected data is finally stored in the shared MongoDB document
store.

e The Embedder service waits until crawlers are finished and then
extends the existing graph with the new data. This task is exe-
cuted periodically and therefore may embed multiple users at once.
Changes are collected and then inserted into the existing word2Vec
model to retrieve a new embedding which then replaces the exist-
ing one.

The client polls for updates on these services and notifies the user as
soon as all tasks are done. On subsequent requests the user context can
be used to compute personal query results.

VI
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