
Universität Innsbruck

Department of Computer Science
Databases and Information Systems

Personalized music search based

on graph embedding

Master Thesis

Christian Esswein BSc.

supervised by
Dr. Eva Zangerle

Innsbruck, February 17, 2018

Abstract

Due to the rise of music streaming platforms, huge collections of music
are now available to users on various devices. Within these collections,
users aim to find and explore songs based on certain criteria reflecting
their current and context-specific preferences. Currently, users are lim-
ited to either using search facilities or relying on recommender systems
that suggest suitable tracks or artists. Using search facilities requires
the user to have some idea about the targeted music and to formu-
late a query that accurately describes this music, whereas recommender
systems are traditionally geared towards long-term shifts of user pref-
erences in contrast to ad-hoc and interactive preference elicitation. To
bridge this gap, we propose Gemsearch, an approach for personalized,
explorative music search based on graph embedding techniques. As the
ecosystem of a music collection can be represented as a heterogeneous
graph containing nodes describing e.g., tracks, artists, genres or users,
we employ graph embedding techniques to learn low-dimensional vector
representations for all nodes within the graph. This allows for efficient
approximate querying of the collection and, more importantly, for em-
ploying visualization strategies that allow the user to explore the music
collection in a 3D-space. Based on a dataset with over 1.5 million graph
nodes, we show that the performance of our recommendations outper-
forms standard matrix factorization methods and produces results that
are comparable to UserKNN techniques in terms of personalization. The
strength of our system which are the seeding items to model short-term
preferences, achieve even higher precision@10 values.

Acknowledgements

First of all, I would like to express my gratitude to Dr. Eva Zangerle for
the supportive guidance during my master thesis. Thank you for your
inspiring tips and patience on providing feedback on my work and in
particular on my written thesis.
In addition, I like to thank DBIS for the helpful feedback on my papers
and for providing a powerful server instance which allowed to host the
Gemsearch prototype and to run the evaluations on.
Furthermore, I would like to thank Markus Schedl from the Johannes
Kepler University in Linz, because he offered to support and present the
visualization paper in Tokyo.
Finally yet importantly, I would also like to thank my family and friends
for supporting me during my studies and the work on this thesis.

III

Introduction

The following master thesis presents Gemsearch, a graph embedding
based music search which aims to combine flexible query mechanisms
with personalized recommendations. Furthermore, the proposed method
allows implicit search refinements and explorative 3D visualizations.
This thesis embraces two papers and an implementation appendix. The
former paper introduces the overall Gemsearch system and in particu-
lar its embedding and query mechanism to retrieve personalized results
based on seeding elements. In addition, we present here an evaluation
on track prediction performance which was conducted on playlist data.
The second paper is a specialization and focuses purely on the visual-
ization of embeddings which were derived from graph embedding tech-
niques. This paper was submitted and accepted on the Intelligent Music
Interfaces for Listening and Creation congress in Tokyo, Japan, March
2018.
The implementation appendix contains specific software architecture de-
tails about the prototype system and should ease the creation of poten-
tial extensions.

V

Appendix

A.1 Implementation Details

This appendix gives a general overview about the Gemsearch prototype
which was implemented during the master thesis. The implementation
can be structured into two main components. As it can be seen in fig-
ure A.1, the data management, graph embedding and recommendation
computation is implemented as a Python application. With a REST
interface these services are exposed and decoupled from the second com-
ponent, the web client, which provides a user interface.

Figure A.1: Main architecture overview

A.1.1 Python application

The actual recommender for computing and storing the required data is
implemented as a Python application. We have chosen Python because
there are many packages for data processing and machine learning. In
addition, also the reference implementation of Deepwalk and the tool
word2vec are written in Python. To achieve reasonable runtime per-
formance, big data structures are stored and accessed with the Python

I

package numpy1 and matrix computations are performed with scipy2

which both rely on native implementations.

A.1.2 Data management

The main data source for Gemsearch is the Spotify API where Pichl et
al. [1] has already crawled a big dataset which consists of 21,336 playlists.
Because this data is stored as JSON, the NoSQL document store Mon-
goDB3 is used to store all crawled data. This makes it easy to create
data subsets for testing, performing statistical analyses and retrieving
metadata to enrich the search results. Synchronized user music libraries
from the Spotify connector are also stored here.

For embedding and evaluation, required data is extracted from Mon-
goDB and stored as CSV files in an intermediate step. This makes is
easier to process or split data and repeat experiments with same sub-
data inputs. After potential training-test splits are applied, the music
graph is constructed. When adding new data to the graph, a mapping
for item ids is applied which makes sure that each node is identified by
a unique unsigned integer id. These continuous ids are required for the
graph embedding algorithms as input and later to transform an embed-
ding index back to the original item. Additionally, they make sure that
same items, e.g. text equal tags, are represented as single nodes in the
graph.

The final graph is represented as a file in the edge list format. Each
line of this file represents an edge between two integer graph node ids
which are separated with whitespace. If the graph embedding algorithm
supports weighted edges (e.g. node2vec), a third value can be used to
specify the weight as float number. Deepwalk uses this file as input and
produces an embedding file as output. This file contains one line per
graph node to represent its latent representation. The Gemsearch rec-
ommender can load those files and stores the embedding as one single
array internally. Using the previously created lookup between embed-
ding index and object id, the representation can be transformed into
both directions. Having all item vectors in one single array allows fast
and efficient access during runtime which is especially important for the
nearest neighbors search.

The computation of recommendation is performed on an embedding
with 126 dimensions. This enables highly precise results with accept-
able runtime performance. However, the 3D visualization requires rep-

1http://www.numpy.org
2https://www.scipy.org
3https://www.mongodb.com

II

resentations in three dimensions such that items can be arranged in the
scene. For this purpose, we apply PCA on the high dimensional embed-
ding to reduce its dimension to three. In the 3D scene, the clients first
evaluates the user query on the 126-dimensional embedding to retrieve
the most relevant result item. This item is displayed in the scene and
then additional results which are around that point are retrieved from
the 3D embedding.

Each item which has a name, except playlists and users, are inserted into
a Elasticsearch4 full-text index. For the evaluation based on playlists,
this service is used to extract query terms from the playlist title. Also,
the client makes use of this index service to provide an autocomplete
function for users while formulating queries. The service takes multiple
keywords as input and returns the ids of items with the most similar
names.

A.1.3 Computation of recommendations

The interface for recommendations takes a list of object ids as input
and returns items ordered by the similarity to this input. Any item of
the graph can be used as seeding element. Optional the weights are
assignable for each item to specify positive, negative and exceptional
items. By default, each item is weighted equally as positive seeding el-
ement. To create personalized results, the user can either be specified
with its ID as additional seeding item or also passed as optional param-
eter where the system uses defaults weights for the scaling (αu = 0.3).

To create a query vector, the latent representation for each object id
is fetched and combined as described in equation 1 of the ”Personal-
ized music search based on graph embedding” paper. Then the cosinus
distance is computed to each item within the embedding to retrieve
nearest neighbors. Ordered by distance to the search vector (similar-
ity), this node indices are traversed and resolved with a lookup to the
actual item object. In this step, optional element type filters (e.g. they
restrict results to tracks) remove unwanted items. During this traversal
the pagination is applied and stopped, as soon as the necessary number
of items are found. Finally, metadata like album covers and preview
URLs are fetched from the document store and attached to the item
descriptors. This final set is returned as result.

A.1.4 REST API

The REST-API provides access to the recommendation service via the
HTTP protocol. At server startup, the whole embedding is loaded into

4https://www.elastic.co

III

memory and then shared between multiple requests to ensure fast re-
sponse times. For the prototype, a Nginx web server forwards API
requests via uWSGI to the Python application. Each request is handled
in a separate thread to execute computations in parallel.

The most important REST endpoints are listed as follows:

/api/query
Returns a list of similar items to the given seeding elements. The
computation is performed on the embedding with 128 dimensions.

Available query parameters:

• ids list of object ids which should be used as seeding items

• types list of item types to restrict the returned items

• limit number of elements to return

• offset number of elements to skip (used for pagination)

• user optional user id to personalize results

/api/items near viz
Returns a list of item-clusters which are around the given 3D co-
ordinate. The computation is performed on the embedding with
three dimension. This is used to lazy load additional items into
the 3D scene. Each cluster consists of a 3D center position and
contained elements. In addition, the total bounding box of all re-
trieved items is attached so that potential clients can adapt their
visible scene to visualize all items at once.

Available query parameters:

• vec 3D coordinate to retrieve nearest neighbors for

• types list of item types to restrict the returned items

• limit number of elements to return

• offset number of elements to skip (used for pagination)

• minClusterDistance minimum distance between items. All re-
sult items which are in a closer distance to one another are
grouped into a cluster.

/api/suggest/<term>
Returns suggested query term items to autocomplete the given
term. Those items may be used to extend a query.

IV

/api/object/<id>
This endpoint returns all available metadata for the given item uid.

/api/neighbors/<id>
Returns all neighbors with attached metadata for the given item
id which are connected via edge in the graph. This allows to fetch
the artist, genre and tags for a given track for example.

A.1.5 Webclient

The implemented Webclient makes it possible for users to formulate
queries and explore recommendations. Without the need for an installa-
tion or additional setup, the web application has many advantages over
traditional desktop applications. TypeScript5, a programming language
superset of JavaScript, was chosen for the implementation because it
provides static type checking during compilation. Created and main-
tained by Microsoft it also enables strong autocomplete suggestions in
e.g. their editor VS Code6 which improves the development process.
The JavaScript framework React7 helps to maintain the client state and
having a virtual DOM enables to program on a more abstract level as
no direct DOM manipulations have to be applied. The whole client
is a standalone application and the communication with the Python
API is done via REST interface to retrieve search results and metadata.
Hereby both components are independent and additional or different
clients could possibly be introduced.

Beside the list view, results can also be explored in a 3D scene where
each item is represented as a single interactive object. For performance
reasons, this scene is rendered in a canvas element using WebGL which
is hardware accelerated on most devices. WebGL has currently many
crossbrowser issues in different browsers and requires writing shader
codes for simple visualizations. The JavaScript library ThreeJS 8 fixes
this issues with a common API and simplifies the development with
many utility methods.

For exploring the search results, users can modify the scene camera
position using their mouse and navigate through the 3D space. The
whole embedding is too big as it could be transferred completely to the
client. Therefore, only the most accurate query results are returned and
additional items are loaded step by step with Ajax requests. After each

5https://www.typescriptlang.org
6https://code.visualstudio.com
7https://reactjs.org/
8https://threejs.org

V

position change, the camera direction is unprojected to get the focused
3D position. Having the new center, additional elements can be queried
and added to the existing scene. To limit the required computational
and memory resources, the maximum amount of displayed elements is
limited. After a fixed threshold previous items are disposed when new
items are added to the scene.

A.1.6 Spotify Connector

As described in Section 3.3 ”Model extension” in the ”Personalized mu-
sic search based on graph embedding” paper, a Spotify account can be
used to get personalized recommendations. When a user connects, access
to the username and the personal music library is granted. The OAuth
protocols allows to retrieve this data as a third-party application with-
out knowing the user’s login credentials. Only a token is transmitted
which authorizes API request for a limited time.
After the user has connected, it is checked if he is already known to
the system. For new users, the token is send to the server in order to
synchronize the music library. In the database this user data is only
identified by the hash of the username and prevents backtracking of
personal information.

Besides the API there are two microservices on the server which execute
long running tasks and prevent to block resources for further requests:

• The Crawler service watches the database for new tracks which
are inserted through the music library synchronization. It makes
sure that all necessary metadata is available to be added into the
graph. For new items, the track data and artists are crawled from
Spotify and tags for tracks are retrieved from Last.fm. The hereby
collected data is finally stored in the shared MongoDB document
store.

• The Embedder service waits until crawlers are finished and then
extends the existing graph with the new data. This task is exe-
cuted periodically and therefore may embed multiple users at once.
Changes are collected and then inserted into the existing word2Vec
model to retrieve a new embedding which then replaces the exist-
ing one.

The client polls for updates on these services and notifies the user as
soon as all tasks are done. On subsequent requests the user context can
be used to compute personal query results.

VI

Bibliography

[1] M. Pichl, E. Zangerle, and G. Specht. Improving context-aware music
recommender systems: Beyond the pre-filtering approach. In Proc.
of the 7th Conf. on Multimedia Retrieval (ICMR), pages 201–208.
ACM, 2017.

VII

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die

vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen Quellen

entnommen wurden, sind als solche kenntlich gemacht.

Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister-

/Master-/Diplomarbeit/Dissertation eingereicht.

 Datum Unterschrift

