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Abstract

Twitter has grown to one of the most popular microblogging websites
in recent years and therefore, has become a major source of opinionated
texts. Since the length of these Twitter messages is limited to 140 char-
acters, detecting whether such a tweet conveys a positive or negative
sentiment is a challenging task and has become a popular field of study
in natural language processing.

In this thesis, we propose an approach called SentTwi to classify the
sentiment of tweets as either positive, neutral or negative. The main
goal of SentTwi is to demonstrate the suitability of so-called factor-
ization machines and ensemble methods in conjunction with state-of-
the-art approaches like part-of-speech tagging, sentiment lexicons and
term frequency weighting to detect the sentiment of tweets. A quality
evaluation based on the datasets of the International Semantic Evalu-
ation (SemEval) challenge 2016 is performed to evidence that SentTwi
provides comparable results than other sentiment detection systems.
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Chapter 1

Introduction

Sentiment analysis has become a popular topic in both economy and
science. Companies are interested in the public opinion about their
products and services. By analyzing product reviews and customer rat-
ings, market researchers are endeavored to find out what people love
about their products or what they think about their customer service.
Also politicians and political scientists rely on the results of sentiment
analysis to investigate the popularity of a political party or the possible
outcome of an upcoming election. In science, universities and research
groups try to outperform each other by building better and more accu-
rate sentiment analysis tools and classifiers.

At the beginning of sentiment analysis, mostly reviews and documents
written by experts have been classified. Nowadays, with the growth
of social media and microblogging websites like Facebook and Twitter,
millions of people express their opinion and feelings about products,
people and their everyday life in short and informal texts. Especially
the microblogging platform Twitter has become an interesting target in
sentiment analysis. Not only regular citizens use Twitter to write about
their life in so-called tweets, also most celebrities and a lot of politi-
cians worldwide are present on Twitter and tweet about their joys and
sorrows. This makes Twitter a valuable source to gather information
about the opinion and sentiment of a vast amount of people worldwide.
Platforms like Social MentionE] and Social Searchelﬂ are using Twitter
sentiment analysis to allow interested parties to search and aggregate
social media content. Due to the limited length and the informal lan-
guage used in T'witter messages, it is more difficult to extract sentiment
information from tweets than from blogs or reviews, thus conventional
sentiment detection approaches have to be rethought and adapted.

"http://www.socialmention.com - accessed on 19 August, 2017
“https://www.social-searcher.com - accessed on 19 August, 2017
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In traditional sentiment classification applications, supervised learning
techniques like naive Bayes, maximum entropy and support vector ma-
chines (SVM) are used [Liul2, [PLV02]. These approaches are popular
as off-the-shelf classifiers because naive Bayes is a simple algorithm and
performs quite well in text classification [Lew98] and sentiment classi-
fication [PLV02]. The more sophisticated SVM has turned out to be a
machine learning all-rounder, applicable to learning problems in various
domains which range from image classification [CHV99| to classifying
cancerous tissue in bioinformatics [FCDT00] due to their capabilities of
handling high dimensional feature spaces well.

Factorization machines (FM) and ensemble methods are two supervised
learning concepts used in this thesis. Factorization machines are a rel-
atively new model in machine learning. They are an approach to com-
bine highly accurate factorization models with the generality of feature
extraction found in traditional machine learning algorithms like SVMs
and linear regression [Renl0]. Ensemble methods are a machine learn-
ing technique which combines a set of individually trained classifiers into
one integrated prediction [Rok05]. This allows the ensemble to benefit
from the knowledge of multiple models instead of relying on the decision
of one single classifier.

Both concepts are suited for text classification and recommendation as
FMs are able to handle sparse input data well [HDD13, RGFST11],
while ensemble methods can improve the performance of a single clas-
sifier [SS00, VC14]. However, it is unclear whether FMs and ensem-
ble methods are suitable for sentiment classification of tweets, as no
research has explored FMs for this task and only few works have incor-
porated ensemble methods in sentiment classification of tweets so far
[KTMT1, MCGVE™13].

To fill this research gap, the goal of this master thesis is to explore the
applicability of factorization machines and ensemble methods to classify
the sentiment of tweets. Therefore, we present SentTwi, a sentiment
analysis tool which uses factorization machines and two different ensem-
ble methods to classify whether a given tweet conveys a positive, neu-
tral or negative sentiment. Each tweet is processed in a feature pipeline
which transforms the tweet into a numerical representation and extracts
features like part-of-speech tags and emoticons. We use the datasets
provided by the Semantic Evaluation challenge (SemEval) to be able to
compare the evaluation results of SentTwi with other participants of
this international competition. The evaluation of SentTwi shows that
FMs and the employed ensemble methods are suitable for sentiment
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CHAPTER 1. INTRODUCTION

classification of tweets and achieve similar performance results as other
classification techniques like SVMs.

This thesis is structured as follows. In Chapter 2, we give some back-
ground information regarding the microblogging service Twitter, provide
a brief overview about sentiment classification and describe SemEval, a
workshop on semantic evaluation. This chapter explains also the novel
classification techniques factorization machines and ensemble methods.
Chapter 3 presents work related to this thesis. The approach and imple-
mentation of SentTwi is presented in Chapter 4. Next, Chapter 5 intro-
duces the metrics used to evaluate SentTw:i and provides the obtained
results, while Chapter 6 discusses these findings. Finally, Chapter 7
concludes the thesis and presents future work.

Benedikt Stricker 3






Chapter 2

Background

To comprehend the main aspects of this thesis, the following chapter im-
parts some basic knowledge. Since this thesis is about classifying tweets,
an introduction to Twitter is given first. Afterwards, the main principles
of sentiment classification including supervised and unsupervised learn-
ing as well as some typically used components in sentiment detection
are presented. The next section of this chapter is about the Semantic
Evaluation tasks which are used to compare our findings and scores with
other classifiers. The mathematical definition and working principles of
factorization machines and an overview of ensemble methods, together
with two popular families of ensemble methods are presented in the last
two sections of this chapter.

2.1 Twitter

TwitteIEI is a microblogging service that launched in July 2006. Today,
more than ten years later and after a rapid growth, Twitter counts
about 328 million monthly active users with more than 80% experiencing
Twitter on mobile devicef?] The success of Twitter compared to other
microblogging websites and social media platforms can be summed up
in three key aspects:

Brevity

Each Twitter user can send a 140-characters limited message (tweet)
which is visible to all other users. Instead of writing a lengthy, several
paragraphs long blog, users can put down their feelings, opinions and
thoughts in a few short and concise words.

By retweeting, a user can forward someone else’s tweet and share this

"https://twitter.com - accessed on 19 August, 2017
“https://investor.twitterinc.com/results.cfm - accessed on 19 August, 2017
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tweet to his/her own followers to spread the message. Besides forward-
ing, users can also reply to a specific tweet to create a conversation
between two or more users. Replying is realized with mentions. Men-
tions are tweets that contain another username preceded by the @-sign
(e.g., @twitter). Tweets can contain one or more mentions anywhere in
the tweet. If a user is mentioned by someone, he/she gets notified and
can respond. If a tweet begins with Qusername, the tweet is a reply to
this user and will be additionally shown in the home timeline of the two
participants.

Hashtags

By preceding a word with the #-sign, users can annotate and group
their tweets into different topics. This prefixed word is called hashtag
and allows users to search and find tweets about a certain topic. If
enough users tweet the same hashtag within a small amount of time,
this hashtag becomes a Trending Topic and will be promoted to more
users to participate in this trend.

Followers

A user can subscribe to tweets from other users (following). When
following someone, each tweet will appear in the follower’s own Twitter
timeline. Following on T'witter is unidirectional, which means that users
do not have to follow their followers too. This allows users to get updates
on tweets from friends, celebrities and communities.

2.2 Sentiment Analysis

Every subjective text contains to some extent sentiment. This senti-
ment expresses the writer’s emotions, opinions or feelings. Sentiment
analysis (also known as opinion mining) focuses on extracting and clas-
sifying sentiment in all kinds of evaluative texts [PLO§]. With the rise
of Web 2.0, blogs, forums and social media, people have generated more
opinionated data than ever before. Since then, sentiment analysis has
emerged to one of the most active topics in natural language process-
ing [Liul2] with different real-life applications. One popular use is the
classification and summarization of product reviews: Instead of reading
through hundreds of reviews, potential customers would like to see at a
glance which reviews are helpful and what other customers think about
the product’s features. Hu and Liu [HL04] proposed a system for min-
ing and summarizing product reviews by finding product features which
are mentioned by customers in an opinion-related context (e.g., “The
pictures of this camera are absolutely amazing.”). Depending on the
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classification goal, sentiment can either be classified in a positive and
a negative class or a three-class based rating which uses in addition to
the two mentioned classes a third neutral or objective class to denote
documents that do not contain any notion of sentiment [Liul2].

2.2.1 Types of Learning Methods

As a text classification problem, supervised and unsupervised learning
methods can be applied to predict the sentiment class of a given docu-
ment. Although most techniques for sentiment classification are based
on supervised methods [Liul2], we will briefly present both learning
methods in the following.

Supervised learning methods

Supervised learning methods use training data together with the corre-
sponding output (labels or target values) and return a classification func-
tion (classifier). The training data is either annotated by a supervisor
(human expert) who labels the data according to the used classification
(e.g., binary or multi-class), or automatically annotated based on mea-
surements or opinionated data. After training, the classifier can predict
labels of any unseen data based on the training data.

Unsupervised learning methods

In unsupervised learning, the learning method receives neither labels,
nor any feedback and therefore tries to find patterns in the given data
to predict future input data. The most common use cases for unsuper-
vised learning methods are finding clusters of similar data (clustering)
and dimensionality reduction, which finds a smaller set of features while
retaining the expressiveness of the original data.

In sentiment classification, we want to compute the sentiment of a doc-
ument according to a fixed set of classes, therefore primarily super-
vised learning methods are used. Techniques like naive Bayes, max-
imum entropy and support vector machines have been proven to be
accurate for binary classification problems in various domains [PLV02]
DLPO03), ICNMO06]. Altough, Turney [Tur02] presented a simple unsuper-
vised method to classify reviews based on the semantic orientation of
adjectives and adverbs. Another unsupervised approach is the use of
sentiment lexicons to lookup the sentiment of a single word or a phrase
to calculate the overall sentiment of a document [DLY0S].

Benedikt Stricker 7
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Tweet
T1 | This Pizza is better than this Burger
T2 | This Burger is not bigger than this Pizza

Table 2.1: Example Tweet T1 and T2

Term | better | bigger | burger | is | not | pizza | than | this
T1 1 0 1 110 1 1 2
T2 0 1 1 111 1 1 2

Table 2.2: Feature Vectors of T1 and T2 Using Term Frequency

2.2.2 Components of Sentiment Analysis Systems

To compute the sentiment of a document, there exist some established
methods and components which will be explained in the following para-
graphs.

Feature Extraction

In order to allow a classifier to analyze the sentiment of the given text
documents, we need to transform their textual representation into a nu-
merical form which the classifier algorithm understands. This numerical
representation is called feature vector, or short features, and is stored
in a two dimensional matrix where each row denotes one tweet and the
extracted features are described by the column index. In the following
pages, the two example tweets seen in Table are used to exemplify
frequently used features [PLO§| in sentiment analysis.

Term based features In text classification, a simple way of represent-
ing a single document as a feature vector is by counting the frequency
of each term in the document. For every document in the corpus, the
occurrence of each term is counted and the corresponding entry in the
feature vector is set to its frequency. This is referred to as term frequency
tft,q of term ¢ in document d.

Table shows the calculated features for the two example tweets of
Table It is easy to see that the words “burger”, “is”, “pizza” and
“than” are present in both tweets once, so each tweet has a tf-value of
1 for the given term. Likewise has the term “this” for both tweets a
value of 2 as it occurs twice in both tweets. Generally spoken, each row
consists of the frequency values for each term contained in each tweet.
Pang et al. [PLV02] used a simpler feature calculation by using presence
rather than frequency and obtained better performance in classifying the
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Term | better | bigger | burger | is | not | pizza | than | this
df 1 1 2 2 1 2 2 2
idf 0.3 0.3 0 0] 0.3 0 0 0

Table 2.3: Calculated Document Frequency df and Inverse Document
Frequency idf of the Example Corpus

sentiment of movie reviews. Presence can easily be realized by binary
values indicating whether a term is present in the document (value 1)
or not (value 0).

Instead of using single words (unigrams) as terms, it can be also useful to
consider higher-order n-grams like bigrams (n = 2) or trigrams (n = 3).
The bigrams for the example tweet T1 are “This Pizza”, “Pizza is”, “is
better”, “better than”, “than this” and “this Burger”. The trigrams for
the same tweet are “This Pizza is”, “Pizza is better”, “is better than”,
“better than this” and “than this Burger”. Which n-grams provide bet-
ter results cannot be said a priori. Sometimes bigrams and trigrams work
better for product reviews like in the findings of Dave et al. [DLP03],
whereas Pang et al. [PLV02] achieved higher accuracy when preferring

unigrams over bigrams in the movie review setting.

The tf-idf model [MRSO§]| is a similar but more advanced metric which
tries to find the discriminative terms which account most for the assigned
sentiment of a document, by measuring the relevance of a term related
to the corpus. Instead of using just the term frequency tf, a second
criteria idf is added which boosts the score of terms which occur rarely
in the document collection and reduces it for very frequent terms. To
achieve this behavior, we make use of the document frequency df; which
is simply defined as the number of documents that contain the term
t. By computing the logarithm of the document frequency relative to
the number of documents IV, we obtain the inverse document frequency
idf. More formally, idf; = logdﬁfi. Therefore, the inverse document

frequency of the term “burger” is 0 because log% = 0. The logarithm
is only used for dampening the effect of the inverse frequency, so it is
not important which logarithm is taken, as long as the same logarithm
is used throughout the feature calculation.

Table shows the document frequency df and the inverse document
frequency idf for the corpus consisting of the all terms appearing in the
two example tweets T1 and T2 introduced in Table Finally, the
tf-idf score as the discriminative power of a word regarding the whole
corpus is calculated as t f-idf; ¢ = t f; ¢ X idf;. In Table it can be seen
that only infrequent terms (with non-zero idf) have a tf-idf score greater
than zero.

Benedikt Stricker 9
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Term | better | bigger | burger | is | not | pizza | than | this
T1 0.3 0 0 0| O 0 0 0
T2 0 0.3 0 0 0.3 0 0 0

Table 2.4: Computed tf-idf Weighting for Example Tweet T1 and T2

To summarize, the tf-idf weight increases if a term occurs often in a
document while appearing only in a small number of documents and
decreases if a term is very frequent across the corpus. In literature, there
exist different versions of the tf-idf statistic which differ mostly in the
calculation of the tf and idf factors [MRSO08|]. Although tf-idf is widely
used in topic classification, Paltoglou et al. [PTI10] have shown that
some tf-idf variants can improve the classification accuracy in sentiment
analysis compared to use of term frequency and term presence.

Part-of-Speech tags Part-of-Speech (POS) tags are another kind of
features which are often used in semantic analysis [PL0O8]. A POS tagger
assigns each term in a sentence its grammatical word class (e.g., noun,
verb, adjective). This allows to focus on parts of speech like adjectives
and adverbs which can be a good indicator of sentiment [PLOg|. POS
tags can also be added to the term frequency feature set to keep track of
the frequency of each part of speech. Section will give more details
about the POS tagger used in this thesis, as well as the exact use of the
calculated POS tag features in the feature extraction process.

Negation Negation words, like “no” and “never”, are crucial as they
can change the sentiment from positive to negative or vice versa. Han-
dling negation is a nontrivial task as negation can also be expressed in a
more subtle way with irony or sarcasm. A popular and simple method
to incorporate negation is by adding artificial words [WBR™10]: i.e.,
attaching “NOT” to a word following a negation word, so “This phone
is not perfect” is changed to “This phone is not perfect NOT”. Han-
dling complex kinds of negation, Wiegand et al. [WBR™10] discusses
advanced modeling techniques like using heuristic rules and supervised
machine learning.

Classification

In the classification step, we use the feature matrix obtained in the fea-
ture extraction phase together with the ground truth labels as input
for our classifier. The ground truth is a single vector containing the
sentiment of every document. Figure depicts the process of this pro-
cedure. After training the classifier with the training data and the truth
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Figure 2.1: Supervised Learning

labels, we obtain a model which can be used to predict new documents.
For this unseen data, we need to extract their features using the same
feature extraction approach as for the training data. The concepts of the
classifiers used in this thesis are presented in more detail in Section [2.4
and Their implementation in SentTwi is given in Section

2.2.3 Challenges in Sentiment Analysis

In contrast to topic-based classification, which focuses on classifying doc-
uments based to their subject (e.g., science, business, sports), sentiment-
based classification has to face some new challenges due to the high sub-
jectivity of the documents. Users can express their sentiment in a subtle
manner or use sarcasm to say the opposite of what they mean. The
tweet “Fleetwood Magc is the only thing getting me through this Mon-
day morning” expresses a positive sentiment in a very subtle manner
without using any obviously positive words. The same goes for sarcastic
tweets like “I can’t express how much I love shopping on Black Friday.”,
which reads like a positive tweet but should convey a negative attitude.

Benedikt Stricker 11
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2.3 SemkEval

SemEva]E] (Semantic Evaluation) is an international workshop which has
evolved from the SensEval series. Since 2012, this workshop is held on
an annual basis and focuses on the exploration of the capabilities of se-
mantic analysis systems. Each year, the organizers assign various tasks
for teams from around the world to compete against in challenges like
automatically ranking relevant answers in Community Question Answer-
ing Forumsﬁ or parsing semantic dependencies in Chinese Sentencesﬂ A
very popular task in the last years is the semantic evaluation of tweets
which attracted 43 teams in 2016 [NRR™16] and is officially referred
as SemEval-2016 Task 4: Sentiment Analysis in TwitterP} Due to the
popularity of this topic, five independent subtasks are provided. Sub-
task A: Message Polarity Classification is the type of sentiment analysis
described in this thesis and forms the basis to compare our system with
other teams. Two of the other four subtasks are about tweet quantifi-
cation (estimating how many tweets have a positive or negative view of
a given topic) and two about tweet classification on a given topic (esti-
mating the tweet’s sentiment towards a given topic instead estimating
the overall sentiment). The different datasets for subtask A, created
and provided by the task organizers are shown in Table The com-
plete training set for 2016 consists of all released datasets from 2013 to
2015 and the training and development sets of 2016. The test set is the
official test data used for the evaluation of SemEval 2016 participants.
Since some tweets appear in multiple datasets, the number of total and
unique tweets in the composed datasets differs slightly. The number of
tweets is also lower compared to the dataset statistics presented by the
organizers [NRRT16] as some tweets can not be accessed anymore.

2.4 Factorization Machines

Factorization machines (FM) are a general framework for factorization
models. FMs have been proposed by Rendle [Ren10] and can be seen as a
combination of support vector machines and factorization models. Like
SVMs, FMs are general predictors which can be trained with feature vec-
tors. By using factorized parameters, FMs achieve the high-prediction
accuracy known from factorization models like matrix and tensor factor-
ization [Renl2al. Similar to SVMs with a polynomial kernel, FMs can
model all interactions between features up to a given degree d between n
input variables in the feature vector x. A two-way FM (d = 2) models all

3http://alt.qcri.org/semeval2016/ - accessed on 19 August, 2017

“http://alt.qcri.org/semeval2016/task3/ - accessed on 19 August, 2017
Shttp://alt.qcri.org/semeval2016/task9/|- accessed on 19 August, 2017
Shttp://alt.qcri.org/semeval2016/task4/ - accessed on 19 August, 2017
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Dataset positive | neutral | negative | total (unique)
2013 4,225 5,283 1,678 11,186
2014 764 549 147 1,460
2015 915 985 326 2,226
2016 Train 2533 | 1,663 690 4,886
2016 Dev 704 632 325 1,661
2016 DevTest 815 584 265 1,655
Total Train 9,956 | 9,696 3,422 | 23,074 (22,700)
Test 5,788 | 8,458 2,512 16,758
Total 15,744 | 18,154 5,934 | 39,832 (39,395)

Table 2.5: SemEval Data Statistics

single and pairwise interactions between the feature variables. This al-
lows the FM to capture similarities even in very sparse feature vectors x.

The model equation of a two-way FM is defined as:

n n n
7(x) := wo + Z w;T; + Z Z (Vi, Vj)Tix; (2.1)
i=1

i=1 j=i+1

where wg, w and V are the three model parameters (collectively referred
as ©) the FM has to estimate:

wo €R, weR", VeRYF (2.2)

The dot product of two vectors of size k is denoted by (-, -), where k € N§
is a hyperparameter that defines the dimensionality of the factorization:

k

<Vz’7 Vj> = Z Vi, f - V4 f (23)
f=1

The first term of the model equation, that is wg, is the global bias
to offset all model predictions. The second part represents the unary
interactions of each input variable x; where w; models the weight of
the i-th variable. The third part with the two nested sums contains
the pairwise interactions of the two input variables x; and x;. The dot
product (v;,v;) models these interactions by factorizing them. This is
the important key point of FMs and the reason why they can handle
highly sparse data well. Instead of modeling the pairwise interaction
with an independent parameter w; ; like SVMs with a quadratic kernel,
FMs model pairwise interaction with a factorized parameter (v;,v;).

Benedikt Stricker 13
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This characteristic holds for higher order FMs (d > 2) and SVMs with
a polynomial kernel of arbitrary degree.

Although the two nested sums in Equation suppose a computational
complexity of O(kn?), Rendle [Renl(] shows a proof for linear com-
plexity: Due to the factorization of the pairwise interactions (v;,v;),
no model parameter depends directly on two variables. This allows to
reformulate the model equation to:

n k n 2 n
" 1
9(x) == wo + Z Wi T; + 3 Z (Z Vi f m,) — Z vzf x? (2.4)
=1 f=1 i=1 i=1
which has a complexity of O(kn) - i.e., has linear complexity.

2.4.1 Learning Methods

To learn the model parameters © (wp, w and V), the three learning
methods Stochastic Gradient Descent (SGD), Alternating Least Square
(ALS) and Markov Chain Monte Carlo Inference (MCMC) have been
proposed by Rendle [Renl2al:

Stochastic Gradient Descent Stochastic gradient descent tries to
find the optimal model parameters by iterations and incremental adap-
tions of the model parameters. SGD is a popular optimizing method as
it has low computational complexity and low storage complexity. One
critical part when using factorization machines with one of the three
learning methods is the right choice of the following hyperparameters:

e Learning Rate — The learning rate parameter is used to control
the step size of the iteration. If the step size is too high, SGD will
not converge as it will miss or fluctuate around the optimum. If
it is too low, the optimization process will take too long as too
many potentially unnecessary computations are performed before
the optimum is found.

e Regularization — Regularization parameters are used to reduce
overfitting. FMs using SGD or ALS allow to specify regulariza-
tion parameters for either all model parameters or three separate
parameters for the global bias wgy, one-way interactions w and
pairwise interactions V. Finding the correct regularization values
is usually done using a grid search, which is very time-consuming
and thus, a well defined search space is essential.

e Initialization — The model parameter V has to be initialized
with non-constant values to work correctly with all of the three

14 Benedikt Stricker
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learning methods. The initialization parameter is used as the stan-
dard deviation for a normal distribution which samples the start
values for V.

With SGD with Adaptive Regularization (SDGA ), Rendle [Renl2b] pre-
sented a method to automatically adapt the regularization parameters
during the training of the model. This is done by using a separate valida-
tion set which optimizes the regularization values during each iteration.
This approach makes learning the model parameters easier and faster
as no regularization parameters have to be specified and therefore, no
expensive grid search is needed.

Alternating Least Square Alternating least squares or coordinate
descent is a learning method which finds each of the three model param-
eters in © independently. The optimal value for each model parameter
is found while fixing the remaining parameters. This is repeated until
the joint optimum of all model parameters is found.

The main advantage of ALS over SGD is that this method only needs to
find the two hyperparameters regularization and initialization. This
makes ALS easier to use while performing as good as SGD.

Markov Chain Monte Carlo Inference The MCMC learning method
uses Bayesian inference technique and Gibbs sampling to integrate the
regularization parameters into the model. These regularization param-
eters are integrated by sampling from their distribution and iteratively
updating the parameters until the optimum values for © are identified.

By automatically determining the regularization parameters, the only
hyperparameter for MCMC that has to be specified is the initializa-
tion. Experiments conducted by Rendle [Renl2al have shown that the
MCMC learning method slightly outperforms the other learning meth-
ods in predicting movie ratings and recommending movies. This makes
MCMC inference the learning method of choice to find the model pa-
rameters for a FM, as it is also the fastest (no extensive grid search) and
easiest (single hyperparameter) method to use.

2.5 Ensemble Methods

Ensemble methods are a technique which combines multiple classifiers to
achieve better prediction results compared to a single learning method.
An ensemble consists of classifiers whose output is integrated into a
single prediction. Note that most statements about ensemble methods
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hold for both learning tasks, classification and regressionﬂ Therefore,
within the scope of this section, we will use the term classifier to denote
a learning method that is applicable to both tasks.

It is important to know that not every combination of classifiers auto-
matically achieves a better performance than the individual classifiers.
A set consisting of identical classifiers will achieve no improvement as
each classifier produces the same output, irrespective of the combination
of these outputs. Hansen and Salamon [HS90| determined two condi-
tions an ensemble has to fulfill in order to gain performance. First, each
classifier must have an error rate less than %, with n representing the
number of possible output classes. In other words, the classifier has to
perform better than simply guessing the correct output values on new
data. The second condition is satisfied if the classifiers are diverse. Di-
verse classifiers have to be independent and produce different errors on
the same unseen data. An ideal ensemble would consist of classifiers
that generalize well and disagree as much as possible [KV94].

Rokach |[Rok05] describes four characteristics to classify various ensem-
ble methods, which will be described in detail in the following para-
graphs.

e Inter-classifier Relationship — How does each classifier affect
the other classifiers in the ensemble?

e Combining Method — How does the ensemble combine the in-
dividual predictions to one final output?

e Ensemble Diversity — How does the ensemble obtain diversity
between the learners to become efficient?

e Ensemble Size — How should the size of the ensemble be selected
to achieve better performance?

Inter-classifier Relationship

Classifiers can either have an effect on other classifiers (sequential type)
or act independently (concurrent type).

Ensemble methods using a sequential approach build their ensemble it-
eratively. In each iteration, a new classifier is trained based on the
knowledge of the previous classifiers. Figure depicts the process of
training an ensemble with a sequential approach. Each classifier h; is
trained after the previous classifier h;_1. The input data D, is a dis-
tribution based on the original data D and some knowledge feedback

"Regression predicts continuous data (e.g., stock prices or temperature) rather
than outputting categorical values (e.g., positive/negative sentiment or movie ratings)
like in classification problems.
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Figure 2.2: Ensemble Using a Sequential Approach

(e.g., performance, error, weights) of h;_;. Each individual prediction is
then combined in a final ensemble output. The advantage of combining
the output of all classifiers into a final value instead of using only the
output of the last classier (i.e., classifier with the most knowledge) is
that the earlier classifier have a balanced view over the whole training
data, whereas subsequent classifiers can focus more on the mistakes of
their predecessors. An example of sequential methods is the family of
boosting algorithms described in Section [2.5.1

Concurrent methods train all classifiers at once. To avoid creating a
set of identical classifiers, this approach focuses on the partition of the
whole dataset into multiple diverse datasets. All classifiers are then
trained concurrently on the given input data. Figure [2.3] visualizes this
methodology. Different datasets D; are derived from the original in-
put dataset D. Each classifier h; is then trained on the given dataset.
Finally, the ensemble combines the output values of the individual clas-
sifiers with a combination method to a final prediction output. Bagging
is a popular concurrent ensemble method and is described in detail in

Section 2.5.21

Combining Method

As each classifier in the ensemble outputs some predictions, a single and
final value for the ensemble as a whole has to be determined. Several
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Figure 2.3: Ensemble Using a Concurrent Approach

methods exist to combine the set of predictions, which vary from sim-
ple averaging to more complex methods like the application of separate
classifiers for meta-combining.

Simple Combining Methods The most popular simple combining
methods are averaging and voting. Simple combination can be described
as a method to find the combined output value hy;,q for a given set of
N learners {hi, ..., hy} where the predicted value of instance h; for
input x is denoted as h;(x). Depending on the machine learning task,
hi(x) € R for regression and h;(x) € C for classification, where C is the
finite set of possible class labels {c1, ... ¢}

Averaging  Averaging computes the combined output in numerical ap-
plications, where the output h;(x) for the learning model h; is a nu-
merical value that can be averaged, e.g., h;(x) € Z or R. To average
the outputs of the learning models, each output can be equally weighted
(simple averaging) or outputs of some learners can be given more impor-
tance (weighted averaging). The final output A inq of a simple averaging
ensemble is calculated as follows:

1 N
hfinal = N Z hZ(X> (25)
=1
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Weighted averaging methods assign each learning model h; a weight w;
to regulate their impact on the combined output. To simplify computa-
tion and comparability with other methods, weights are usually positive
(w; > 0) and sum up to 1 (vazl w; = 1). Weighted averaging can
mathematically be written as:

N
htina = Z w; hi(x) (2.6)
i1

Voting  Voting is a combination method that is used to combine out-
puts of an ensemble used for classification or any other task that pro-
duces categorical outputs.

Magjority voting is a simple voting schema that selects the class that has
been predicted by more than the half of classifiers. If no class received
more than half of the votes, the ensemble rejects the input and does not
predict anything. The disadvantage of this combination method is that
the possibility of a rejection is higher if the classification task has a lot
of possible classes.

Plurality voting (or uniform voting) eliminates the possibility of a rejec-
tion as it predicts the class with the highest number of votes. Mathe-
matically, it can be written as:

N
hfinal = MaXc;eC Z hlcj (X) (27)
=1

where h? € {0,1} evaluates to one if classifier h; predicts class ¢; and
zero otherwise.

Analogous to the weighted average method, there exist a weighted voting
schema. This combination method is often used if some of the individual
classifiers are known to perform better than others and thus their vote
should receive more weight. Ideally, the weights w; should have the same
constraints (w; > 0 and 25\;1 w; = 1) as in the weighed average method.
The weighted voting schema is calculated as follows:

N
hfinal = maze,ec Y w; by (x) (2.8)
i=1

Meta-learner Combining Methods Meta-combining methods use
an additional meta-learner to combine the outputs of the learners. Al-
though there exist a number of different meta-combining methods [CS93|
CS97,, [SF01l, LLO§|, we will present stacked generalization [Wol92] as an
example of these methods.

Stacked generalization (or stacking) is a general framework developed
by Wolpert [Wol92]. In stacking, a meta-learner receives the predicted
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output values of the base-level learning models as training data to predict
the final output. The original dataset is divided into two subsets. The
first subset is used to train the base-level learners, while the second
subset forms the training data for the meta-learner. After the first tier
of learners is trained using the first subset, they predict the labels of
the second subset. These predicted values form the training set for
the meta-learner. The meta-learner is then trained on this training set
together with the original labels of the subset. This allows the meta-
learner to use the disagreement of the base-level classifiers to correct
their improper training by learning their behavior from their individual
prediction values.

Ensemble Diversity

Using diverse classifiers are a very important factor when construct-
ing an ensemble. An ensemble consisting of similar learning algorithms
trained with the same dataset will most likely degenerate to one sin-
gle classifier, which would be no improvement at all. Rokach [Rok05]
states two general methods to generate diversity: either by manipulating
the classifier or by manipulating the training data. Dietterich [Die(0al
mentions a third technique for constructing ensembles: manipulating the
output targets.

Manipulating the Classifier A simple way to change the behavior
of each classifier instance is by injecting randomness into the learning
algorithm. Dietterich [Die00Ob] proposed a decision tree algorithm that
does not choose the best attribute at each node in the tree like standard
decision trees, but randomly selects one of the 20 best suited attributes.
The author showed that an ensemble of 200 classifiers using this deci-
sion tree variant performs statistically significantly better than a single
decision tree.

Neural networks can also be used as a base algorithm for diverse en-
sembles by training each network with a randomly chosen set of initial
weights [Pol90].

Manipulating the Training Data One way to manipulate training
erxamples is by training each classifier on a different subset of the whole
training data. This method is effective for an ensemble with unstable
learning algorithms (i.e., minor changes in the training data cause major
changes in the predictions). Examples of unstable learning algorithms
are decision trees and neural networks, whereas SVMSs, linear regression
and k-nearest neighbor are stable algorithms.

Instead of changing the set of training data, it is also possible to change
the set of input features each classifier is trained on. Each individual
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classifier is then trained on all training examples but only with a subset of
features. This method can be useful if the data consists of a high number
of redundant features. However, the first method is often preferred over
this method as it is easier to find more training examples that can be
split into subsets than finding new input features that describe the data.

Manipulating the Output Targets This technique changes the tar-
get values that are given to each individual classifier. Dietterich and
Bakiri [DB95|] proposed a method called error-correcting output coding
for multiclass learning algorithms by encoding each class as a binary
string of fixed length. For each classifier in the ensemble, the set of pos-
sible classes is randomly separated into two subsets. The target values
of the training data are then relabeled such that all classes belonging
to the first subset are mapped to the derived class 0 while the origi-
nal classes in the second subset get the label 1. Each classifier is then
trained on the training data with different labels. New data can then
be classified by letting each classifier predict the derived output label 0
or 1 meaning that the data belongs either to a original class in the first
or second subset. Each class in the corresponding subset receives a vote
and the final prediction is then determined by the class with the highest
number of votes.

In other words, each class is described as a binary code word and each
classifier is trained to predict a given bit of this code word. Predicting
new data is then done by combining the binary output of the individual
classifiers into a new code word and choosing the class whose code word
has the smallest Hamming distance to the predicted code word.

Ensemble Size

The last factor for building successful ensembles is to choose the cor-
rect number of classifiers. A bigger ensemble generally improves the
overall accuracy (to some point) but also increases the computational
complexity as more classifiers have to be coordinated. As each ensemble
responds differently to changes in the number of classifier, the ensemble
size has to be found manually for each problem.

2.5.1 Boosting

Boosting [Sch90] is the concept of a learning method that sequentially
improves an arbitrary learning algorithm. Boosting trains a series of
classifiers on different training data in so-called boosting rounds. In each
round, a new classifier is trained on a training set composed of training
samples based on the performance of the previous classifiers. The final
prediction is then made by combining the output of all classifiers.
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Training Data
D (original) | 1,2,3,4,5,6
Dy 5,2,4,3,6,1
Dy 4,6,5,3,1,4
Ds 4,2, 3,4,4,5
Dy 4,4,6,5,4,4

Table 2.6: Boosting: Example Training Sets for AdaBoost with Four
Rounds of Boosting. Assuming Training Example 4 is Hard to Classify
and Example 1 is an Easy One. Therefore, AdaBoost Samples the Hard
Examples More Often Since These are More Prone to Misclassifications.

Freund and Schapire [F'S96] developed a concrete algorithm called Ada-
Boost based on this Boosting concept. AdaBoost chooses the training
data for subsequent classifiers based on the misclassifications of the clas-
sifier in the previous boosting round. Including misclassified instances
into the training progress is achieved by weighting each instance. The
weight of the instance is increased if the example has been misclassified,
while the weight decreases with correct classifications. Therefore, it is
required that the base algorithm supports weighted training instances.
If this is not the case, resampling has to be used. Resampling is done
prior to the training process and samples the training data according
to the assigned training weights. The higher the weight is, the higher
the probability that this instance is chosen for the new dataset. This
results in multiple instances of “difficult” examples and few occurrences
of “easy” instances.

In the first boosting round, each instance x; in the original dataset D has
the same weight and thus, the same probability that it will be selected as
a training example in the training set D; for the first classifier hy. After
evaluating the performance of hq, the weight for instance x; is decreased
if hy classifies x; correctly else the weight will be increased. This forces
the next classifiers to concentrate on “hard” examples which get often
misclassified instead of dealing with “easy” examples that always get
classified correctly. Table[2.6]shows an example how AdaBoost with four
boosting rounds resamples each training set D; for h;. Assuming that
example 4 is a “hard” example and example 1 an “easy” instance, it can
be seen that the latter classifiers have multiple instances of example 4
and therefore will focus more on the correct classification of this example.

The final prediction is determined by a weighted vote by giving greater
weights to classifiers with lower error (i.e., fewer misclassifications).

Experiments comparing AdaBoost with other ensemble methods and
learning algorithms demonstrated that AdaBoost often performs very
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Training Data
D (original) 1,2,3,4,5,6
D; (resample) | 3,4,1,4,5,3
Dy (resample) | 6,5, 2,3,6, 1
D3 (resample) | 5,4,5,5, 1,3

Table 2.7: Bagging: Example Training Sets for an Ensemble of Three
Classifier. Each Resampled Dataset D; is a Random Subset of the Orig-
inal Dataset D.

well but is sensitive to noise [OM99] [Die00a]. This is because the weight
of noisy examples will increase drastically as they are often misclassified.
However, AdaBoost can greatly outperform other methods like bagging
or randomized trees on appropriate data (e.g., less noise or enough data).

2.5.2 Bagging

Bagging (Bootstrap AGGregatING) [Bre96] is one of the most well-
known concurrent methods to generate an ensemble of learners. Bagging
is a simple bootstrap algorithm that creates a set of classifiers and trains
each classifier h; concurrently on a random distribution of the original
training data D. The new training set D; for each h; is created by
sampling from D with replacement until D; has the same amount of
examples as the original dataset. As sampling with replacement is used,
some training instances may be repeated and others will not be present
in the sampled dataset.

Table shows an example run of bagging with three classifiers, the
original dataset D and three resampled training datasets, each consisting
of six instances. For example, the training set D; contains examples 3
and 4 twice while 2 and 6 are missing. This makes the classifier trained
on this data an “expert” for data similar to the training examples 3 or
4 whereas the error for examples like 2 and 6 probably will be high, as
the classifier has never seen such data.

Bagging predicts new data instance as follows: Each classifier calculates
an individual output which is then aggregated by the ensemble in a final
prediction value. Depending on the task, bagging uses voting for clas-
sification and averaging for regression. The combination of the output
of a set of diverse “experts” compensates the higher error-rates of the
individual learners. Since the classifiers are trained concurrently, bag-
ging features two benefits compared to sequential methods like Boosting.
First, the whole training process of the ensemble can be computed in
parallel and thus bagging is very attractive for computing on multi-core
and parallel computers which can reduce the training time drastically.
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Second, the random drawing makes the sampled training sets highly
independent which is a important factor for a successful ensemble. Dif-
ferent work [OM99] [Die00al] shows that bagging is appropriate for most
problems as it is insensitive to noisy data and usually performs better
than a single classifier.
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Related Work

For this thesis, three areas of research are particularly relevant: First,
sentiment analysis as the field of study to analyze opinions and senti-
ments in natural language texts is discussed since the opinion of tweets
has to be analyzed. Moreover, factorization machines as well as ensemble
methods are relevant because these are the two families of classification
algorithms used in this thesis. In the first section of this chapter, rele-
vant work in the field of sentiment analysis and the analysis of tweets
in particular is presented. The literature research on sentiment analysis
relies on the literature survey of Pang and Lee [PLO8| and Liu [Liul2] in
their comprehensive books about sentiment analysis and opinion min-
ing. The second part will give an overview of current applications of
factorization machines and ensemble methods as classifiers.

3.1 Twitter Sentiment Analysis

Sentiment analysis has become a growing field of research in natural lan-
guage processing. Besides some early work [Car79,[WB83] which tried to
model human understanding and beliefs, research in sentiment analysis
started around the year 2000 due to the growth of user generated content
like online reviews and blogs. In 2001, Das and Chen [DCO01] proposed a
methodology to extract sentiment from stock messages and classify them
into optimistic, pessimistic and neutral messages. They used a suite of
five different classifiers together with a majority voting schema to predict
the final sentiment of the financial chat board messages and achieved an
accuracy of 62%. Pang et al. [PLV02] compared the performance of
three standard machine learning algorithms (naive Bayes, maximum en-
tropy and SVM) based on their applicability for sentiment classification
of movie reviews. They considered the sentiment classification of movie
reviews as a binary classification task with a review belonging either
to the positive or negative class. The best accuracy of 82.9% has been
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achieved through a SVM with unigram features. Although these papers
used the terms sentiment and opinion frequently, according to Pang and
Lee [PLO8|] and Liu [Liul2], the phrase sentiment analysis first appeared
in the paper Sentiment Analysis: Capturing Favorability Using Natural
Language Processing by Nasukawa and Yi [NYO03].

The popularity of Twitter has yielded to some interesting works in re-
cent years. Go et al. [GBHO09] were one of the first who used sentiment
analysis on Twitter data. As little or no labeled tweets for training and
testing were available, they had to build their own datasets. By using
happy emoticons (:), :-), :D, ...) and sad emoticons (:(, :=(, :()
as query parameters for the public Twitter APIEL they automatically
collected tweets with positive sentiment (containing happy emoticons)
and negative sentiment (containing sad emoticons). Similar to Pang
et al. [PLV02], they tested naive Bayes, maximum entropy and sup-
port vector machines as classifiers. Four different kinds of features have
been chosen and compared: unigrams, bigrams, the combination of un-
igrams and bigrams and unigrams with POS tags. The overall best
accuracy (83.0%) has been reported when using unigrams and bigrams
together with the maximum entropy classifier, whereas SVM with simple
unigrams achieved a similar accuracy of 82.2%.

Barbosa and Feng [BEF10] proposed a two-step classifier for sentiment
detection within tweets. First, a tweet is either classified as subjective
or objective (subjectivity detection). Each subjective tweet is then fur-
ther identified as a tweet with a positive or negative sentiment (polarity
detection). Barbosa and Feng used a slighty different approach than Go
et al. [GBHO9] for building their tweet datasets: Instead of querying the
Twitter API directly, they submitted queries to three different real-time
sentiment detection websites to get roughly 350,000 tweets (200,000 af-
ter cleansing) along with their sentiment (positive, negative or neutral).
In the context of feature space, they also tried a new approach. As
tweets are always very short, the authors decided against the common
use of raw word representation (n-grams) and developed an abstract
representation of a tweet, by using two sets of features. A meta-feature
set consisting of the given word’s part of speech, its subjectivity (weak
or strong subjectivity) and polarity (positive, negative or neutral), each
of them looked up in a dictionary. The second type of features are called
tweet syntax features and exploit the syntax of a tweet by counting the
occurrences of retweets, hashtags, replies, links, punctuations, emoti-
cons and words with upper case letters. All in all they represent a tweet
with only 20 features and thus achieved a reasonable performance when
training a single SVM with a small number of training tweets (20% and
23.8% error rate with only 2,000 training tweets for the sentiment de-

"https://dev.twitter.com/rest/public|- accessed on 19 August, 2017
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tection and polarity detection classifier, respectively). When using a
higher number of training tweets and three SVMs to classify a tweet,
they reported an error rate of only 18.1% for the subjectivity detection
and 18.7% for detecting polarity (positive or negative).

Pak and Paroubek’s work [PP10)] is similar to Go et al. [GBH09] with the
difference that they incorporate neutral/objective tweets as a third class
of possible sentiment and put an additional focus on the linguistic analy-
sis of the collected corpora by checking the distribution of part-of-speech
tags in subjective (positive or negative) and objective (neutral) tweets.
They used the same procedure as Go et al. [GBH09] to collect positive
and negative tweets by querying the Twitter API for happy and sad
emoticons. They queried Twitter accounts of popular newspapers like
the New York Times and Washington Post to obtain objective tweets.
In their linguistic analysis of the collected corpora, they observed that
some parts of speech, like nouns and verbs in the third person are more
common in objective texts and others are more often used in subjec-
tive texts, e.g., utterances and personal pronouns. They experimented
with uni-, bi- and trigram features and employed naive Bayes, SVM
and conditional random fields (CRF) as classifiers. To improve accu-
racy, common n-grams were discarded by computing the entropy and a
newly developed metric called salience was introduced for each n-gram.
Salience is an alternative metric to entropy which is based on the prob-
ability of a n-gram having a given sentiment. The best accuracy of 61%
was reported when using naive Bayes with bigrams.

Similar to the Twitter-related papers referenced so far, Kouloumpis
et al. [KTMII] built their own Twitter corpus and used it together
with two other corpora. Their training corpus is based on a subset of
the Edinburgh Twitter Corpus [POLI0]. The emoticon corpus of Go
et al. [GBHQ9] is used to enhance the training corpus while a hand-
annotated corpus of approximately 4,000 tweets serves for evaluation.
After removing stopwords and normalizing abbreviations, all-caps and
character repetitions, they used unigrams, bigrams, the MPQA subjec-
tivity lexicon [WWHO05], POS tags and microblogging features (emoti-
cons, abbreviations and intensifiers) as their feature set. An AdaBoost
classifier trained on all features except POS tags outperformed SVMs
with a best accuracy of 75%. Using all features including POS tags
decreased the accuracy of the classifier by 3%.

Agarwal et al. [AXV™11] focused on two sentiment classification tasks:
binary classification into negative and positive and three-way classifica-
tion into positive, neutral and negative sentiment. For each task, they
experimented with three types of models. A simple unigram model, a
feature based model and a tree kernel based model. The feature based
model contains standard features like POS tags, emoticons and word
polarity and the kernel based model uses a tree representation of tweets
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and calculates the similarity between trees to deduce the sentiment. All
models use support vector machines as the classification algorithm. The
authors used a different approach to obtain their data. Instead of using
noisy labels like emoticons [GBH09] or hashtags [KTMII] to retrieve
and annotate English tweets, the authors used an existing manually an-
notated Twitter corpus containing roughly 12,000 tweets, originally in
various languages, which have been translated into English using Google
Translate. After sanitizing and balancing the dataset, 5,127 tweets re-
main for training and testing. Their experiments showed that their
feature based model performs similar to the unigram model whereas
the tree kernel based model outperforms both. Best accuracies were re-
ported when enhancing the feature model with unigrams (75.36%) and
combining the feature model with the tree based model (60.83%) for the
binary task and three-way task, respectively.

Martin Illecker [III15] and Zangerle et al. [ZIS16] presented an approach
called SentiStorm, to classify tweets within a real-time processing sys-
tem. They used the datasets from the SemEval-2013 challenge to train
and evaluate their system. After data preprocessing using regular ex-
pressions, the tf-idf schema, POS tags and sentiment lexicons were used
to generate the feature vectors. A SVM with a radial basis function
(RBF) kernel was used to classify each tweet according to a three-
way (positive, negative and neutral) classification schema. SentiStorm
achieved an accuracy of 70.21%, which makes its performance compara-
ble with other systems of the SemEval challenge.

3.2 Applications of Factorization Machines and
Ensemble Methods

Below we present academic work that make use of factorization machines
or ensemble methods in several machine learning tasks.

Factorization Machines

As factorization machines (FM) are a relatively new topic in machine
learning, there are fewer applications compared to the typical learning al-
gorithms like support vector machines or naive Bayes. FMs are a general
machine learning algorithm that uses factorization to improve prediction
quality under high data sparsity under linear complexity. Therefore,
FMs tend to be appropriate for text classification, especially for short
texts like tweets as they consist only of a few words.

Steffen Rendle [Renl0] presented factorization machines as a new learn-
ing algorithm that can be compared with SVMs but addresses some of
their problems: Unlike SVMs, factorization machines perform well on
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very sparse data and can be calculated in linear time instead of polyno-
mial time (in case of SVMs with a polynomial kernel).

The earliest use of FMs are presented in [RGFST11] and [FSTRII].
Both papers demonstrate the advantages of FMs over traditional models.
Rendle et al. [RGFST11] presented how to use FMs for context-aware
recommender systems. Context-aware rating predictors use, in addition
to user and items, contextual information about the situation in which
the rating of the item happens (e.g., time, mood, location or weather).
This additional information is referred to as context and can provide bet-
ter recommendations than non-context-aware systems [KABOI0]. The
authors of [RGEST11] showed that their FM implementation can achieve
better results in terms of faster runtime and prediction quality compared
to other best performing methods in context-aware recommendation.
Freudenthaler et al. [FSTR11] proposed an extension to FMs by using
structured Bayesian inference. Their Bayesian Factorization Machine
(BFM) performed better on the Netflix challenge compared to state-of-
the-art methods like stochastic gradient descent (SGD) and Bayesian
probabilistic matrix factorization (BPMF).

To the best of our knowledge, one of the first papers which use factoriza-
tion machines in combination with Twitter data are Hong et al. [HDD13]
and Qiang et al. [QLY13]. The approach of Hong et al. [HDD13]| predicts
user decisions (if a user retweets a certain tweet) and models content
(what are the users’ interests) simultaneously by analyzing their Twit-
ter dataset consisting of 27 million tweets. Therefore, they proposed
Co-Factorization Machines (CoFM), an extension to FMs which can
handle multiple aspects (decisions and content) of the same tweet where
each aspect is represented in a separate FM. The authors reported that
their CoFM system performs significantly better than state-of-the-art
baselines like matrix factorization and standard FMs.

To rank the most recent tweets according to the user’s relevance (real-
time search), Qiang et al. [QLY 13| proposed Ranking Factorization Ma-
chines to model microblog ranking with factorization machines. They
used procedures like query expansion and extracting HTML from posted
URLs to enhance their set of features used to model a tweet. Experi-
ments on the Tweet11 corpus of the Twentieth Text REtrival Conference
(TREC 2011) showed that their Ranking FM approach achieves better
results than several baseline methods, including the winner of the TREC
2012 real-time search task [HLY"12].

Oentaryo et al. [OLL™14| developed Hierarchical Importance-aware Fac-
torization Machines (HIFM). HIFMs are an extension to factorization
machines which include importance weights and hierarchical learning
into the generic FM framework. Oentaryo et al. reported that these
enhancements improve the prediction of dynamic advertising responses
(i.e., estimating click-through rate to maximize advertising revenue) by
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overcoming the cold-start problem and weighting more important ads
higher.

Chen et al. [CDCX14] use factorization machines to predict the trend
of stock data. Unlike traditional stock market predictions which are
based on the analysis of historical stock data, they incorporate social
media to predict if a given stock price rises or drops at the end of the
day. They used user messages from Sina Weibo, a popular Chinese mi-
croblogging website and experimented with different textual representa-
tions and showed that their approach using FMs achieves 81% accuracy
and thus performs better than other baseline approaches.

Ensemble Methods

Ensemble methods train multiple instances of learners on individual
data and combine their output to predict more accurate results. En-
semble methods have a wide range of applications including image re-
trieval [JEDO4], face recognition [HZZT00], collaborative filtering [Kor(9)
or data mining [NMPS™09]. Hence, we present papers making use of en-
sembles only in the context of sentiment analysis in the following para-
graphs.

[BET0] and [KTMTI] presented in Section[3.1lmade already use of ensem-
ble methods. Barbosa and Feng [BF10] did not use accuracy to measure
the performance of their classifier. Instead, they measured their results
with an error rate metric that has not been defined by the authors. The
lowest error rate in polarity detection (18.7%) has been achieved when
using an ensemble of three SVMs and taking the prediction of the SVM
with the highest confidence as the final prediction value. Kouloumpis et
al. [KTM11] used an AdaBoost algorithm with 500 rounds of boosting
in combination with cross validation for their experiments.

Wilson et al. [WWHO05|] built a two-step classification system to dis-
tinguish the polarity of phrases. Similar to Barbosa and Feng [BF10],
they distinguished between neutral and polar phrases in the first step.
For the second step they tried to classify each polar phrase as positive,
neutral, both or neutral. Although neutral phrases were marked as non-
polar in the first step, the authors noted that some neutral expressions
are classified as polar and therefore neutral has to be considered as a
separate class in the second step. In both classification steps, they used
an AdaBoost learning algorithm with 5,000 rounds of boosting. The
first classifier (neutral-polar classification) achieved 75.9% accuracy on
their test set while the second classifier (four-way polarity classification)
achieved an accuracy of 65.7%.

Wan [Wan08] developed a new unsupervised learning approach to clas-
sify the sentiment of non-English resources. First, the author translated
Chinese reviews into English by using various machine translation ser-

30 Benedikt Stricker



CHAPTER 3. RELATED WORK

vices to obtain different English versions of the same Chinese review.
By using different Chinese and English sentiment lexicons, semantic ori-
entation values (a positive/negative value represents a positive/negative
review) for every version of the review were computed. To aggregate the
set of orientation values to a final polarity, seven simple ensemble meth-
ods (e.g., average, weighted average, majority voting) were used. Wan
reported to achieve the best accuracy of 86.1% when using a weighted
average of the semantic orientation values of two English translations
and the original Chinese review.

Martinez-Cémera et al. [MCGVFEFT13| built an ensemble classifier for
polarity classification of Spanish tweets. The ensemble combines the
output of three different polarity classifiers: a SVM which uses a gener-
ated sentiment lexicon as features, a vector model generated with a deep
learning algorithm and an unsupervised learning method using three sen-
timent lexicons. The voting scheme to combine the outputs is a simple
majority voting with a tie resolution strategy which considers results
with a tie as neutral output. The authors stated that their ensemble
improves the performance of the three base classifiers.
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SentTwi

The following chapter describes our approach to build SentTwi, a tool
for sentiment detection of tweets. A pipeline is used to process and
transform the input tweets step by step into applicable input for the
classifier. The classification program is written in Python 8 and uses the
popular machine learning library scikit—leamﬂ The pipeline consists of
five main steps:

Read Tweets
Preprocess Tweets
POS Tagging
Feature Generation
Classification

Ol W=

Tweet
Dataset

Preprocess

Tweets ‘

POS Tagging

Classification SELUTE Q—J

Generation

Read Tweets =

Predicted
Sentiment

A

Figure 4.1: Classification Pipeline Consisting of Five Consecutive Steps.

Figure [4.1] visualizes this learning procedure which starts with the pro-
cess of importing the tweets and returns the predicted sentiment of the
test tweets at the end. The first step reads the training and test tweets
from a file and the second step preprocesses them. During the pre-
processing, each tweet gets normalized by converting all characters into

"http://scikit-learn.org/|- accessed on 19 August, 2017
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lowercase and simplifying negations, abbreviations and slang. The POS
Tagger component tokenizes each tweet into single tokens and assigns
each token a part-of-speech tag. The feature generation component ex-
tracts and generates the features using the transformed tweets, their
POS tags and various sentiment lexicons and outputs the feature vec-
tors for the classifier. Finally, the classifier component uses the features
generated in the previous step and the input labels given from the first
component to predict the sentiment of the test tweets. The classifier can
be one of the classification algorithms presented in Section [2.4] and
factorization machine, AdaBoost or Bagging. Since we have a training
and a test set, we need to extract features from both datasets. Therefore,
all steps except the last classification step are applied on both corpora.
Each of the five steps will be described in detail in the remaining chapter.

4.1 Read Tweets

The first component reads the tweets from a given TSV file. A TSV
(tab-separated values) file is similar to a CSV file, a simple text file
where each data record consists of a single line separated by a tab.
This TweetReader expects the same tab separated format used in the
SemEval 2016 Task 4 Subtask A dataset filef’) The training and test
files provided by the SemEval organizers are formatted as follows:

id label

where id refers to the tweet’s unique ID in the Twitter API and 1label is
the annotated sentiment and can be either positive, neutral or negative.
To protect the privacy of the Twitter user and prevent abuse of the
tweets, the provided corpus does not contain the actual tweet. To obtain
the desired tweets, the SemEval organizers provide a download SCI‘iptE|
to crawl these tweets via the official Twitter API. After downloading the
tweets, the format of the TSV file looks as follows:

id label tweet

The TweetReader parses each data record line by line into memory and
stores them as a list of tweets and a list of labels. To use the sentiment
labels as input for the classifier algorithm, the textual labels positive,
neutral and negative are mapped to their numeric representation of 1,
0 and -1, respectively. This importing process is executed two times on
different data: First the training tweets get imported and then the test
tweets are read.

2http://alt.qcri.org/semeval2016/task4 - accessed on 19 August, 2017
3https://github.com/aritter/twitter_download - accessed on 19 August, 2017
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Expanding _ Expanding o Substitute

LTRSS > Negations | Contractions o Slang

Figure 4.2: Preprocessing Steps

4.2 Preprocessor

The preprocessor is the first component that processes the actual content
of the tweets. Due to the limited length of tweets, users sometimes use
linguistic shortenings like contractions (“I'm”, “it’s” or “y’all”), abbrevi-
ations (“b4” or “pic”) and acronyms (“AFAIK”, “ICYMI” or “TLDR”)
to not exceed the 140 character limit. The preprocessor aims to turn
these shortenings back into their normal form since most information
retrieval techniques require standard English text to work. This also de-
creases the number of possible phrases in a tweet and thus, reduces the
complexity of the sentences and feature size. The preprocessing phase
is also split into multiple small sub-steps. Figure [£.2] illustrates this
workflow, which is described further in the following.

Lowercase The first operation turns the whole tweet into lowercase
text to remove case sensitivity and damp the emphasis of all-caps words
like “NEVER”, “STOP” or “THANKS”. Although there exists alter-
natives like truecasing [LIRKO3|], which tries to correct capitalization,
all words are converted to lowercase due to the informal language used
in tweets. Similar to short messaging and instant messaging, Twitter
users tend to write lowercase regardless of the correct capitalization or
capitalize single words to indicate importance. Therefore, correct true-
casing can be a challenging task with unknown benefit and lowercasing
everything is a simple and practical solution [MRSO0S].

Negation Substitute negations expands contractions of negations like
“doesn’t” and “wouldn’t” to their written base form “do not” and “will
not”. Using the base form rather than keeping the tense and person of
the negation reduces the complexity as “ain’t” and “weren’t” get both
substituted by “is not”.

Contraction The third step is similar to the previous one. Miscel-
laneous contractions like “you’re” and “it’s” are substituted by their
written base form “you are” and “it is”. The goal of these substitutions
is the same as before: reducing the feature size and normalizing tweets.
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Table 4.1: Examples of Slang Abbreviations and Acronyms with their

Slang | Meaning
‘cause because
¢’mon come on
omg oh my god
u you
y’all you all
yr year

Corresponding Substitution

Step Unprocessed Tweet | Preprocessed Tweet
Case Folding | This is AWESOME!!! | this is awesome!!!
. I won’t be in class to- | i will not be in class to-
Negations
morrow morrow
5 5 . e : -
Contractions I(t s cold. I’'m freezing 12: is cold. i am freezing
oh my god! you are
Slang OMG! U are crazy! |
crazy!

Table 4.2: Example Tweets Demonstrating Each of the Four Prepro-
cessing Steps. Text in Bold Indicates the Changes Made During the
Respective Step.

Slang In the last step, common slang abbreviations and acronyms are
substituted with their meaning. Table shows some slang examples
and the meaning they get substituted with. Substituting slang phrases
with standard English is needed to allow later components like the POS
tagger and the sentiment lexicons to process these phrases correctly.

To recap the preprocessor steps, tweets are turned into all lowercase
words first and then contractions and slang abbreviations are expanded
to reduce the sparsity of the feature vector by unifying similar expres-
sions. Table illustrates these preprocessing steps and lists example
tweets returned by the TweetReader before and after the preprocessor
phase.

4.3 POS Tagging

The POS tagger receives the preprocessed tweets from the Preprocessor
and computes the corresponding part-of-speech tags. Popular POS tag-
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ger software like the Stanford Tagger [TKMS03] work well on classical
text data (articles, books, etc.) but are not suited for tweets or similar
user generated content |[GSOT11]. Specialized taggers are trained on
tweets to be able to detect tokens often used in tweets and social media
like emoticons, hashtags and mentions. In literature, there are two rel-
evant POS taggers available to tag tweets: first, the CMU ARK Tagger
by Owoputi et al. [OODT13| and second, the GATE Tagger proposed
by Derczynski et al. [DRCBI3].

The ARK Tagger has been developed at the Carnegie Mellon University
and consists of a Java-based tokenizer and POS tagger. The tagger is
trained on a manually labeled set of tweets and uses the POS tagset by
Gimpel et al. [GSO™11] consisting of 25 part-of-speech tags which can be
found in Appendix The ARK tagger uses a first-order Maximum
Entropy Markov model (MEMM) as the tagging model which allows
efficient training and decoding (i.e., finding the most likely sequence of
tags for a given tweet) and unsupervised word clusters combined with a
hidden Markov model (HMM) to improve performance further.

The GATE Twitter POS tagget{z_f] is part of GATE Developer{ﬂ7 a Java
development environment for human language processing. The GATE
tagger is available as a Java plugin for the GATE software, a standalone
Java program or as a trained model for the Stanford Tagger. All versions
use an improved Twitter model which addresses errors frequently made
by other POS taggers. The GATE team mentions slang, unknown words
and misspellings as common mistakes. For compatibility with possible
existing text processing tools, the GATE tagger uses the Penn Treebank
tagset [MMSO93]. The Penn Treebank tagset is the de facto standard
tagset for English texts and consists of 36 different tags, which is a
slightly more complex tagset, compared to Gimpel’s custom tagging
scheme used in the ARK tagger.

Both teams behind the two Twitter POS taggers report a similarly high
accuracy of 93.2% and 88% for the ARK tagger and the GATE tag-
ger, respectively. Our reason for the decision to use the ARK tagger is
primarily based on Illecker’s experience [[II15] with the two presented
taggers and the slightly better accuracy of the ARK tagger. Illecker
performed an experiment to determine the more suitable tagger for his
approach. He compared the standalone performance of the two taggers
by the number of tweets they can tag per second and the number of
parallel threads they are running on and reported an increase of 20% to
30% in the number of tagged tweets per second when using the ARK
tagger in place of the GATE tagger.

‘https://gate.ac.uk/wiki/twitter-postagger.html - accessed on 19 August,
2017
Shttps://gate.ac.uk/|- accessed on 19 August, 2017
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Preprocessed Tweet Tagger Output

[("@microsoft’, @, 0.9989), (i, O,
0.9883), ('will’, V, 0.9997), (’be’, V,
0.9994), (’downgrading’, V, 0.9715),
(and’, &, 0.9965), (’let’, V, 0.98),
(#windows10’, #, 0.9686), ('be’, V,
0.998), (out’, T, 0.6579), (for’, P,
0.997), (’almost’, R, 0.9203), (’the’,
D, 0.9974), ('lst’, A, 0.8932), ('yr’,
N, 0.9555), ('b4’, P, 0.9489), (‘trying’,
V, 0.9996), (it’, O, 0.9902), (‘again’,
R, 0.9877), (:/’, E, 0.9551), ("#win-
dows10fail’, #, 0.9361)]

@microsoft i will be down-
grading and let #win-
dows10 be out for almost
the 1st yr b4 trying it again
:/ #windows10fail

Table 4.3: Example Tweet and List of the Corresponding POS Tags as
Tuples (Token, Tag, Confidence)

Table shows a preprocessed example tweet and the corresponding
output tags of the ARK tagger. For each token, a tuple containing the
word, tag and the confidence of the assigned tag is returned. We observe
that for the example tweet the tagger has a confidence of at least 90%.
The lower confidence of out with 0.6579 can be explained since out can
be either tagged as a verb particle T' (as in this example) or as a prepo-
sition P (as in “it blazed out into space”). Also Twitter-specific tokens
like the at-mention “@microsoft” and the hashtags “#windows10” and
“#windows10fail” are correctly annotated with @ and #. Similarly, the
ARK POS tagger recognizes abbreviations (“lst”, “yr” and “b4”) and
emoticons with a quite high confidence.

After the POS tagging process, a small post-processing component al-
lows to prune the token output of the tagger. Since tokens tagged with
U (URL or email address) normally do not convey any sentiment as
they are often shortened or random links, they are dropped from the
list of tokens. The same is done with stopwords since they have little
semantic content and would only introduce unwanted noise.

The POS Tagging component receives a list of tweets and returns a list
of tuples consisting of the token, the assigned tag and the assignment
confidence for each tweet. This tags are then used as input in various
parts of the following feature generation component.
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4.4 Features

Generating high-quality features is the most crucial part in the classifi-
cation process. This component extracts a variety of features from two
input sources and generates a single feature matrix for the classifier.
Features typically used in sentiment analysis such as the bag-of-words
model, POS features and sentiment lexicons are extracted. The Fea-
ture Generation component is composed of six sub-components which
independently receive either the preprocessed raw tweets from the pre-
processor or the tagged tweets annotated by the POS tagger. These six
feature vectors are then concatenated end-to-end into the final feature
matrix. The sub-components are presented in the subsequent pages.

4.4.1 Bag-of-Words

The first sub-component of the feature extraction procedure uses the
bag-of-words model [MRS08] which ignores the word order and turns
the preprocessed raw tweets into a feature matrix. This process is also
known as wvectorization and thus, this feature extraction component is
called wvectorizer. One of the two different weightings presented in Sec-
tion can be used to describe the features: either a simple term fre-
quency (tf) weighting which counts the occurrences of each word in the
whole corpora or the more advanced term frequency-inverse document
frequency (tf-idf) weighting.

First of all, the raw tweet string has to be split into single word tokens.
Although the POS tagger has already tokenized the string during its
tagging process, we want to use a second tokenizer for one simple reason.
Using a dedicated tokenizer for the bag-of-words features allows us to
replace this tokenizer without touching the POS part of the system since
the CMU ARK tagger depends on its own built-in tokenizer. Because
this tokenizer performs well on tweets, the ARK team provides a self-
contained version of the tagger’s tokenizer, called Twokemzeﬂ which is
used as the tokenizer for the bag-of-word features.

After tokenizing the tweet, another post-processing step is done to re-
move unwanted tokens or modify specific words. Analogously to the
post-processing step in the POS tagging process, which drops tokens
with little semantic value from the POS list, a similar post-process re-
moves stopwords, URLs and punctuation from the bag-of-words feature
set. User mentions and hashtags are trimmed by removing their first
character (i.e., “@Q” and “#”) to combine the features of these Twitter
tokens and normal words, e.g., “#married” contributes now to the fea-
ture “married” instead of representing a new one. The last step in this
post-processing uses the Snowball stemmer [PorOI] to apply stemming

Shttp://www.cs.cmu.edu/~ark/TweetNLP/ - accessed on 19 August, 2017
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Group POS Tag
Nouns N,O, ", S, Z
Verbs \%
Adjectives A
Adverbs R
Interjections !
Twitter #,@Q ", U
Emoticons E

Table 4.4: Mapping from ARK POS Tags to Features. Tags in Bold
are Used as Feature Names in the Feature Vector.

to each remaining token which reduces the words to their common word
stem.

The feature vector generated by the vectorizer is the largest feature
vector consisting of tens of thousands to multiple hundred thousands of
features, depending on the size of the training corpora and the settings
of the vectorizer.

4.4.2 POS Tags

The POS tags generated by the POS Tagging component from Sec-
tion have to be transformed into a numerical representation. The
ARK tagger assigns each token one tag from the Gimpel tagset (Ap-
pendix consisting of 25 part-of-speech tags. Similar to Zhu et
al. [ZKM14], we count the occurrences of groups of tags instead including
each assigned token in the feature vector individually. Table f.4]enumer-
ates the seven tag groups and the corresponding POS tags contributing
to their counts. Tags written in bold are the group’s abbreviation used
as the feature name. Other tags like determiners (D) and prepositions
(P) are ignored as they usually have only grammatical functions and
have little to no semantic content.

The counts of each group are normalized by the length of tokens to scale
each feature to the interval [0, 1]. Table shows the feature vector
obtained from the ARK POS tagging component for the example tweet
from Table[4.3l It can be seen that some elements are omitted since the
post-processing step has removed useless tokens. The remaining list of
tokens contains ten elements with three Twitter tags (one @ and two
# tags) which yields to a normalized value of % = 0.3. If features are
not present in a single feature vector (in this example, adverbs/R and
interjections/!), their value is automatically set to zero in the overall
feature matrix.
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POS Tagger Output ‘ Feature Vector
[("@microsoft’, @), ("downgrading’, V),

(’let’, V), (#windowsl0’, #), ("1st’, N V A # E
A), Cyr’, N), ('b4’, P), (trying’, V), 0.1, 0.3, 0.1, 0.3, 0.1]
(’:/’, E), (#windows10fail’, #)]

Table 4.5: Feature Vector of the Post-Processed POS Example Tweet
Found in Table (Confidence Values are Elided)

4.4.3 Punctuation

Some punctuation, especially exclamation marks, can intensify positive
as well as negative sentiment. Along the lines of Zhu et al. [ZKM14],
four different punctuation features are extracted for each tweet:

e Number of sequences of continuous exclamation marks
e Number of sequences of continuous question marks

e Number of sequences of continuous exclamation or question marks
(e.g., 17, 12272110

e Whether the last token of the tweet contains either an exclamation
or question mark

The calculation can easily be done by matching each token against a
simple regular expression for each feature.

4.4.4 Emoticons

Analogous to the punctuation features, a set of emoticon features is used
to detect sentiment beyond words. The occurrences of emoticons in the
tweets are counted and each emoticon is classified either as positive,
neutral or negative. For each sentiment a list of emoticons has been
manually picked from various sources [Z][ﬂ and extended. The three lists
contain 91 positive, 34 neutral and 66 negative emoticons, respectively,
and can be found in Appendix

4.4.5 Sentiment Lexicons

Multiple sentiment lexicons are used to determine the sentiment of single
tokens. A sentiment lexicon is a list of words which associates each word
a sentiment score. There exist various ways to assign a word a polarity.

"http://cool-smileys.com/text-emoticons - accessed on 19 August, 2017
Shttps://en.wikipedia.org/wiki/List_of _emoticons - accessed on 19 August,
2017
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Most lexicons use a positive/negative scale to denote the intensity of
the sentiment. Some more specialized lexicons use category values like
strong and weak or anger, sadness and joy to associate implications
and emotions with words and phrases. There exist even lexicons which
associate colors with target words [Mohll]. However, SentTwi uses
only lexicons with categorical (positive, negative, neutral) or numerical
target scores (e.g., {—1,0,1}, [0,1], [-5,5]). To be able to compare and
combine the results of the lexicons, all scores are scaled to an interval
of [0, 1] using Min-Mazx scaling based on the following equation:

x — min(z)

(4.1)

Pscaled = max(x) — min(x)
where x is the actual sentiment score from the lexicon and the two
extrema are the maximal and minimal sentiment scores found in the
lexicon.

Seven different lexicons are used and for six of them, feature vectors
consisting of the following six features are built:

Number of words with a positive sentiment

Number of words with a negative sentiment
e Number of words with any sentiment assigned

Sum of all sentiment scores

e Maximum positive sentiment

e Maximum negative sentiment

For each tweet, all six features are calculated by looking up the sentiment
of the tokens in the lexicons. SentTwi uses the same boundaries for
positive, neutral and negative sentiment as proposed by Illecker [III15]:
A rescaled sentiment score < 0.45 is considered as megative sentiment
and words with a score > 0.55 are treated as words with a positive
sentiment. Sentiment scores between the two boundaries are neutral
words and contribute to the third and fourth feature.

The used lexicons are presented and compared in the paragraphs below.

AFINN

The AFINN-111 lexicon [Niell] is a list of English words built by Finn
Arup Nielsen. The author manually collected and labeled 2477 unique
words with an integer score between —5 (negative) and +5 (positive).
After rescaling, the lexicon contains 878 positive words, 1598 negative
words and one neutral word.
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MaxDiff Twitter Sentiment Lexicon

The SemEwval-2015 English Tuwitter Lexicon, sometimes also referred
as MazDiff Twitter Lexicon is a lexicon of single words and two-word
negated phrases with scores between —1 and +1. It has been developed
by Kiritchenko et al. [KZM) RNK™15] at the National Research Council
Canada (NRC) in the course of their participation at the SemFEval-2015
Sentiment Analysis in Twitter challenge. The 1515 different phrases
are taken from English Twitter corpora and are manually annotated
through crowdsourcing using the MaxDiff annotation methodﬂ Since
the words are taken from tweets, the lexicon contains informal language
characteristics like misspellings and hashtags which makes the lexicon
predestined for Twitter sentiment analysis. At the end, the MaxDiff
Lexicon consists of 681 positive, 633 negative and 201 neutral terms.

Opinion Lexicon

Liu and Hu built the Opinion Lezicon [HL04, LHCO5] using words ex-
tracted from online customer product reviews. This generated lexicon
contains 2006 positive and 4783 negative words. Feature scaling is easily
done by mapping positive scores to 1 and negative scores to 0.

Sentiment140 Lexicon

The Sentiment140 Lexicon has been created by the NRC Canada team
for their SemEval-2013 submission [MKZ13]. The lexicon has been gen-
erated based on the sentiment140 corpus [GBH09] containing 1.6 million
tweets and consists of 62,468 unigrams (25,906 positive, 22,481 neutral,
14,081 negative). The team calculated for each word a decimal sen-
timent score between —5 and 45 by calculating the pointwise mutual
information (PMI) for terms found in positive and negative tweets.

SentiStrength

SentiStrengthF_U] is a sentiment-analysis program developed by Thelwall
et al. [TBPT10, TBP12]. In our approach, we only use the sentiment
terms included in SentiStrength. This sentiment lookup table is a collec-
tion of 648 positive terms and 2009 negative terms. Positive terms are
assigned integer values from 1 to 5, whereas negative terms get scores
from —5 to —1. The special feature of this lexicon is that it does not

9Maximum Difference Scaling aka Best-Worst Scaling [LEMI5] is a comparative
annotation schema which let annotators select the best and worst item out of four
possible items.

"http://sentistrength.wlv.ac.uk/|- accessed on 19 August, 2017
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SynsetTerms interactive interactional

Gloss capable of acting on or influencing each other
Scores (pos/neg/obj) | 0.375/0.125/0.5

Table 4.6: SentiWordNet: Synset Composed of the Two Synonymous
Terms “Interactive” and “Interactional”

only contains words commonly used in social media but also terms end-
ing with a wildcard. For example, the term “beaut*” would match any
word starting with “beaut” (e.g., “beauty”, “beautiful”, “beautifully”).
The authors manually assigned and revised the sentiment scores and
wildcards to improve the negative sentiment strength detection of the
SentiStrength algorithm.

SentiWordNet

SentiWordNet [ES06, BES10] is a generated sentiment lexicon based on
WordNet synsets. A synset is a set of synonyms linked together by
similar senses. SentiWordNet assigns each synset three sentiment scores
(positive, negative and objective) based on their glosses. Each of the
three scores range in the interval [0.0, 1.0] and their sum add up to 1.0.
The SentiWordNet lexicon includes almost 207 thousand terms with
their POS and over 117 thousand synsets. Table shows an exam-
ple synset for the term “interactive” with the synonym “interactional”.
Both SynsetTerms are grouped into a synset with the same meaning.

Since terms with multiple meanings belong to multiple synsets, a single
sentiment score for a set of synsets has to be calculated to be able to
lookup a sentiment score for a single token. The sentiment score for a
term is calculated by a weighted average. After transforming all synsets
into single lookups, our SentiWordNet lexicon contains more than 155
thousand terms associated with a sentiment score between —1 and 1.

VADER

VADER Sentiment [HG14] is a lexicon and rule-based sentiment analy-
sis tool. VADER (Valence Aware Dictionary for sEntiment Reasoning)
uses a human-curated base lexicon with approx. 7,500 words, including
social media terms (emoticons, abbreviations, slang), in combination
with a small set of rules to detect sentiment. In contrast to other senti-
ment lexicons, VADER performs on a sentence level basis for sentiment
calculation. For each input string, four scores are calculated: a positive,
neutral and negative score between 0 and 1 which add up to 1 and an ad-
ditional compound score. The compound score is the sum of the valence
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scores for each word normalized to be between —1 and 1. The valence
score is internally used by VADER to measure the sentiment intensity
of words and ranges from -4 (extremely negative) to +4 (extremely pos-
itive). The sentiment scores are modified by analyzing the grammatical
structure and looking for booster and shifting words like “extremely”,
“not” or “but”. Compared to the other lexicons, VADER computes for
each tweet a feature vector consisting of four sentiment scores instead
of returning a vector with six features.

4.5 Classifiers

The last component in the classification pipeline is the classifier. The
classifier is the core component in the whole classification pipeline pro-
cess. It uses machine learning to classify new tweets on the basis of
a previously learned feature vector produced by the feature generation
component. The modular concept of scikit-learn allows an easy replace-
ment of the classifier component. SentTwi can use either a factorization
machine, an AdaBoost or a Bagging classification algorithm to classify
tweets. In the following, the configuration of the classifiers presented in
Section and will be explained. For each classifier, a grid search
is used to find the parameter configuration with the best performance.

4.5.1 Factorization Machines

Since factorization machines are a comparatively recent machine learn-
ing concept, there exist few libraries yet. LimeE] is the reference im-
plementation for factorization machines and has been proposed by their
developer Rendle [Renl2al. It is fully written in C++ and is controlled
via command line arguments. To use libFM in our project, we make use
of a Python wrapper called pwaMH This wrapper starts the libFM
process with the arguments supplied by our Python code and returns
the result written by libFM.

Unfortunately, libFM only supports binary classification. To be able to
predict our tweets according to the three-class schema (positive, nega-
tive, neutral), we could either use multiclass classification (One-vs-Rest
or One-vs-One) [MRS08] or compute regression values instead of classes
and map these values to our three classes. Although scikit-learn offers
a multiclass module to perform One-vs-Rest and One-vs-One classifica-
tions, this approach would have implied additional efforts since pywFM
does not conform with scikit-learns interface, meaning an own multi-
class classification implementation would have to be written. Therefore,

"http://www.libfm.org/|- accessed on 19 August, 2017
?https://github.com/jfloff/pywFM - accessed on 19 August, 2017
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we decided to perform regression instead of classification to obtain real-
valued scores between —1 and 1 and map each regression score s to a
sentiment class ¢ according to the following equation:

positive if s > 0.4
c = { negative if s < —0.4 (4.2)

neutral else

The interval for the neutral class is larger than the interval used to
map the sentiment of the sentiment lexicon features ([—0.4,0.4] versus
[0.45,0.55]), as first attempts using FMs with regression indicate that
using a larger interval improves the prediction quality.

Factorization machines allow three different learning methods (see Sec-
tion[2.4.1)): Stochastic Gradient Descent (SGD), Alternating Least Square
(ALS) and Markov Chain Monte Carlo Inference (MCMC). We use
MCMC, since it is the recommended method by Rendle [Renl2a] as
it has the fewest input parameters which reduces the time to find the
best parameters during the grid search process. LibFM and thus pywFM
too, needs five parameters as command line arguments. The three pa-
rameters k0, k1 and k2 determine how the model parameters © (wy,
w and V) are used. To recap: wy defines the global bias, w are the
unary interactions and V models the pairwise interactions between the
variables. The libFM parameters kO and k1 state whether wy and w
should be used or not, while k2 sets the dimensionality of the factoriza-
tion parameter (i.e., hyperparameter k in V € R™**). The number of
iterations to find the regularization values with Gibbs sampling are re-
stricted by the fourth parameter iter. The last parameter init_stdev
is the initialization hyperparameter which initializes the model param-
eter V. In the MCMC learning model, this parameter can be set to 0,
whereas appropriate values can speed up the learning process.

4.5.2 AdaBoost

AdaBoost is the first of the two ensemble methods used in this thesis.
AdaBoost is a boosting algorithm which chooses the training examples
in each boosting round based on the classification results of previous
rounds. Scikit-learn provides a module called sklearn.ensemble which
contains ensemble methods for tasks like classification and regression.
The AdaBoostClassif ieI{T_?’-] requires three parameters. The parameter
n_estimators specifies the size of the ensemble and the learning_rate
parameter controls the contribution of each classifier in the final output.

Bhttp://scikit-learn.org/stable/modules/generated/sklearn. ensemble.
AdaBoostClassifier.html|- accessed on 19 August, 2017
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The last parameter base_estimator defines the type of classifier the
ensemble consists of and defaults to a decision tree.

4.5.3 Bagging

The Bagging classifier is our second ensemble method and is similar
to AdaBoost in terms of usage and parameter tuning. Each Bagging
classifier chooses the training instances randomly from the given training
set. In addition to the parameters found in AdaBoost, scikit-learn’s
BaggingClassif ieIFEI allows to specify the number of training samples
each classifier selects (max_samples) and whether these samples should
be drawn with replacement (boostrap). As an alternative option to
the bootstrapping algorithm based on the sample size, we can split the
input data for each classifier feature-based, which is known as random
subspace [Ho98]. Classifiers using random subspace employ all samples
with a subset of features instead of a subset of samples with all features.
This option introduces two additional parameters, max_features and
boostrap_features, which set the feature subset size for each classifier
and whether features are drawn with replacement, respectively. If both
parameters (max_samples and max_features) are used, this method is
known as Random Patches [LG12].

4.6 Grid Search

Almost every component presented so far allows to specify parameters
to tune their behavior. A grid search is used to find the optimal set
of parameters to achieve the best performance on unseen data. This is
done by performing an exhaustive search through a manually preselected
subset of all possible parameter combinations.

Since a grid search with the complete SemEval dataset presented in
Table would be too time-consuming, only the SemEval 2016 train
and development datasets are used. To avoid overfitting, an n-fold cross-
validation schema is used which divides the input dataset into n equally
sized subsets. The grid search executes each parameter configuration
n-times with n—1 subsets as training data and the remaining n—th subset
as test set. Since the SemEval data is not equally distributed among
the three sentiment values positive, neutral and negative, a variation of
n-fold, called stratified n-fold is used. Stratified n-fold splits the data
into n subsets as well, but preserves the percentage of samples in each
class.

Yhttp://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
BaggingClassifier.html - accessed on 19 August, 2017
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Although scikit-learn offers a convenient GridSearchCV class which runs
a grid search using cross-validation, an own grid search implementation
with cross-validation had to be written because pywFM does not con-
form to the interface required by GridSearchCV.

To find the optimal choice of parameters, two different grid searches have
been executed. Since each feature component can be parameterized and
the classifiers allow various settings, performing one single grid search
over the whole parameter space would be too exhaustive and unfeasible.
Both grid searches use 5-fold cross-validation to determine the settings
with the highest accuracy score.

4.6.1 Classifier Grid Search

The first grid search tries to find appropriate parameters for the classi-
fier. This grid search is used to determine the set of parameters which
maximize the accuracy score while using the default settings for the fea-
ture pipeline. The parameters found by this search are then used in
the second grid search to find the best parameters for the feature vector
components. Since each classifier has a different parameter space (i.e.,
differ in parameter names, amount of parameters and allowed values),
this grid search has to be executed for each classifier separately. There-
fore, the Classifier Grid Search has to try 512, 150 and 1024 different
parameter combinations for the factorization machine, AdaBoost and
Bagging classifier, respectively.

4.6.2 Feature Vector Grid Search

After the first grid search has found the optimal parameters for each of
the three classifier types, the Feature Vector Grid Search tries to identify
the unknown optimal parameters of the pipeline component. Similar
to the first grid search, this grid search uses 5-fold cross-validation on
the same SemEval 2016 dataset. In the end, the Feature Vector Grid
Search component has tried for each of the three classifiers 6144 different
combinations of the eight parameters listed in Table The set of
parameters and their optimal value found by both grid searches are
displayed in the following tables. Tables and show the
values found by the first grid search and Table presents the set
of pipeline parameters for each of the three pipelines together with the
accuracy achieved with the parameters found by both grid searches.
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Parameter

Description

vectorizer

Specifies the type of vectorizer:
- CountVectorizer uses tf weighting
- TfIdfVectorizer uses tf-idf weighting

pre_active

Whether the preprocessor should transform the
tweets at first (Section 4.2).

stop_words

Whether the vectorizer should remove stopwords
during tokenization.

binary

If true, the vectorizer considers the count of words
in each tweet as binary instead as an integer (i.e.,
term presence instead term frequency)

ngram_range

Specifies the lower and upper bound of the n-gram
size generated by the vectorizer. E.g., the value
(1,3) would consider uni-, bi- and trigrams.

max_features

The number of features the vectorizer will extract at
most, ordered by their frequency.

min_df Ignores terms that have a lower absolute document
frequency (number of tweets) than this value.
max_df Ignores terms that have a higher relative document

frequency (percentage of tweets) than this value.

Table 4.7: Parameter Space of the Feature Vector Grid Search

Benedikt Stricker
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Parameter | Optimal Value
init_stdev | 0.001

k0 0

k1 1

k2 6

num_iter 150

Table 4.8: Factorization Machine

Parameter Optimal Value
base_estimator | Decision Stump
learning rate | 0.5
n_estimators 250

Table 4.9: AdaBoost

Parameter Optimal Value
base_estimator Decision Tree
n_estimators 1000
max_samples 0.5
max_features 0.875

bootstrap False

bootstrap_features | False

Table 4.10: Bagging

Parameter Optimal Value

FM AdaBoost | Bagging
vectorizer Count | Count Count
pre_active False False False
stop_words None None None
binary False True True
ngram_range | [1, 1] 1, 2] [1, 1]
max_features | None None None
min_df ) 50 10
max_df 0.9 0.7 1.0
Accuracy 62.2% | 61.8% 60.4%

Table 4.11: Pipeline Parameters for Each Classifier

Optimal Values Found by the Grid Searches for Each Classifier
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Chapter 5

Evaluation

This chapter describes the evaluation and the metrics used to analyze
the prediction quality of SentTw:i. In the first part, different metrics
to measure the quality performance of a classification system are intro-
duced. The second section of this chapter presents the actual prediction
quality of SentTwi as well as the impact of selected components on the
prediction quality.

5.1 Evaluation Metric

To visualize the performance of a classifier, a table called confusion ma-
triz is used. A confusion matrix C'is of size n x n with n as the number
of possible classes for the particular classification problem. Table
shows a confusion matrix for our three-point sentiment classification
task. Each column represents the number of tweets the system pre-
dicted for a given class, whereas each row contains the number of tweets
in the actual class. Each cell ¢; j represents the number of tweets which
belong to class 7 and are predicted by the classifier as class j. The con-
fusion matrix of a perfect classifier would therefore only contain large
values in the diagonal cells ¢;;, which are the correct predictions, and
zeros in the off-diagonal elements, the incorrect predictions.

All of the following four evaluation metrics can be easily comprehended
with the help of the confusion matrix.

Accuracy An intuitive method to measure the quality of a classifier
is to count the number of correct classifications. This metric is called
accuracy and represents the ratio of correct classifications. In terms
of the confusion matrix, the accuracy is the sum of true predictions
along the diagonal in proportion to the number of total test samples, as

o1
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Predicted Class

POSITIVE NEUTRAL NEGATIVE
Tg @ POSITIVE true positive | false neutral | false negative
© & NEUTRAL | false positive | true neutral | false negative
< O "NEGATIVE | false positive | false neutral | true negative

Table 5.1: Confusion Matrix C for the Three Classes POSITIVE, NEU-
TRAL and NEGATIVE. Entries in [talic Represent the Correct Predic-
tions.

presented in the following equation:

D i1 Cii
2o Z?:o Ci,j
Accuracy assumes equal cost for all classes since it takes every class
equally in account. So if the classes are not equally distributed and one
class is predominant, a classifier can achieve a high accuracy by simply
predicting the predominant class. For example, if 90 of 100 samples
are labeled as class A, a classifier scores an accuracy of 90% just by
predicting every test item as class A.

Accuracy = (5.1)

Precision Precision measures the class agreement of a system by cal-
culating the fraction of predictions which are classified correctly. In
multiclass classification, precision is calculated for each class individu-
ally. Equation defines the precision score for a given class i.

Cii

>i=1 Gl

Precision; =

(5.2)

Recall Recall, also referred as sensitivity, estimates the effectiveness of

a classifier to predict a given class. This metric is defined by the fraction
of correct predictions of class i and is given by the following equation:

Ciji

Recall; = ———

DY

(5.3)
F-Score The F-score (also known as Fj-score or F-measure) is a com-
bination of precision and recall. It is the harmonic mean of precision
and recall. The F}-score for class ¢; is defined according to the following
equation:

. 2-precision; - recall;

F} =

(5.4)

precision; + recall;
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Model Acc (%) | FEN (%)
FM 64.14 53.68
AdaBoost | 63.01 57.00
Bagging 62.72 56.87

Table 5.2: Accuracy and F'V of SentTwi Evaluated with the Official
Tweet 2016 Test Dataset.

The metric used to evaluate and compare the performance of SentTwi
throughout this thesis is a variation of the macroaveraged F-score. This
F['N_score is used by the SemEval challenge [NRR¥16] and is the aver-
age of the Fj-score of the positive class F{” and the Fj-score of the nega-
tive class F{’. Equation |5.1|illustrates the calculation of the FfN-score.

_ PP+ FY

FEN 5

(5.5)

5.2 Results

In this section, we present the evaluation results of the prediction quality
of SentTwi for each of the three classification algorithms: factorization
machine, AdaBoost ensemble and Bagging ensemble. The parameters
used for the following results have been determined by the grid searches
described in Sectiond.6l The statistics of the used train and test datasets
are given in Table[2.5} The training procedure is done on the Total Train
dataset consisting of 22,700 different tweets. The official SemFval 2016
Test set (16,758 tweets) is used for evaluation.

5.2.1 Classifier Comparison

Table illustrates the performance of SentTwi achieved with each of
the three classifiers.

It can be seen that all three classifiers perform similarly well. Especially
the two ensemble methods, AdaBoost and Bagging, achieve roughly
equal accuracy and Fj-scores. Although using a factorization machine
as the classification algorithm scored the best accuracy (64.14%), both
ensemble methods outperform the factorization machine approach in
terms of FI'N by more than 3%.
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Actual
Class

Actual

Class

Actual
Class

Predicted Class

POSITIVE | NEUTRAL | NEGATIVE | TOTAL

POSITIVE 3,510 2,210 68 5,788

NEUTRAL 1,556 6,382 520 8,458

NEGATIVE 100 1,556 856 2,512

TOTAL 5,166 10,148 1,444 | 16,758

Table 5.3: FM: Confusion Matrix

Predicted Class

POSITIVE | NEUTRAL | NEGATIVE | TOTAL

POSITIVE 3,469 2,049 270 5,788

NEUTRAL 1,603 5,751 1,124 8,458

NEGATIVE 264 889 1,359 2,512

TOTAL 5,336 8,669 2,753 | 16,758

Table 5.5: AdaBoost: Confusion Matrix

Predicted Class

POSITIVE | NEUTRAL | NEGATIVE | TOTAL

POSITIVE 3,687 1,829 272 5,788

NEUTRAL 2,003 5,535 920 8,458

NEGATIVE 375 844 1,293 2,512

TOTAL 6,065 8,208 2,485 | 16,758

Table 5.7: Bagging: Confusion Matrix

positive | neutral | negative
Precision | 67.94% | 62.89% 59.28%
Recall 60.64% 75.46% 34.08%
I 64.08% 68.60% 43.28%

Table 5.4: FM: Additional Performance Results

positive | neutral | negative
Precision | 65.01% | 66.11% 49.36%
Recall 59.93% 67.76% 54.10%
B 62.37% 66.92% 51.62%

Table 5.6: AdaBoost: Additional Performance Results

positive | neutral | negative
Precision | 60.79% | 67.43% 52.03%
Recall 63.70% 65.44% 51.47%
F 62.21% 66.42% 51.75%

Table 5.8: Bagging: Additional Performance Results

Confusion Matrices and Additional Performance Results for Each Classifier
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Table to show the confusion matrices as well as recall, precision
and Fi-scores per class for each of the three classifiers. Looking at the
confusion matrices, it is noticeable that the factorization machine ap-
proach classifies more tweets as neutral compared to the ensemble meth-
ods (10,148 vs. 8,669 and 8,208, respectively) which results in fewer cor-
rect true negative classifications (856 vs. 1,359 and 1,293, respectively).
The same characteristic can be seen in the recall score of the nega-
856

tive class of the factorization machine classifier (Ry = 5518 = 34.08%)

shown in Table Since the F{¥-metric is the harmonic mean of pre-

cision and recall (F}¥ = % = 0.4328), the low number of

correct negative classifications is the cause for the low F{¥V-score of
SentTwi with FMs compared to the AdaBoost and Bagging classifiers.

5.2.2 Feature Analysis

To measure the impact of each type of feature, we perform a feature
analysis presented in the feature ablation table By removing every
feature from the full feature set, we can compare the effectiveness of
a specific feature with other features and how much it contributes to
the overall performance. For this feature analysis the same training and
test datasets as for the classifier comparison are used. The presented
values are the averaged results of three executions to smooth the impact
of randomness in the sampling process of the classification algorithms.
The measured difference in the performance scores between the three
executions ranges from 0.01% to 0.84%. The F}N-scores of the FM
executions fluctuate most (0.3% on average), whereas the other values
deviate 0.13% on average. The reported baseline is the performance
result of a baseline classifier that classifies each tweet in the test set as
positive.

It can be seen that the features with the highest impact on the predic-
tion quality are the sentiment lexicons. They improve the accuracy of
all three classifiers by 1.7% to 2.79%. Interesting is the remarkable in-
crease in the Ff'N-score: 12.64% for factorization machines, 13.43% for
AdaBoost and 17.93% for Bagging. These results can only be achieved
if all lexicons are used while each lexicon individually has minimal im-
pact on the performance. The second most substantial feature is the
bag-of-words model. It increases the accuracy roughly the same as the
sentiment lexicons (1.33% to 2.32%) but without the same effect on the
F 1P N_metric.
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Feature FM AdaBoost Bagging
Acc (%) FEN (%) Ace (%) FPN (%) Acc (%) FEN (%)

All 64.13 53.59 62.98 56.95 62.68 56.82

- Bag-of-Words 61.81 (-2.32) | 49.74 (-3.84) | 61.50 (-1.48) | 56.36 (-0.59) | 61.36 (-1.33) | 55.94 (-0.88)
- POS 64.07 (-0.06) | 53.58 (-0.01) | 62.66 (-0.31) | 56.35 (-0.60) | 62.55 (-0.13) | 56.61 (-0.21)
- Punctuation 63.70 (-0.44) | 53.38 (-0.21) | 62.55 (-0.43) | 56.78 (-0.18) | 62.45 (-0.23) | 56.64 (-0.18)
- Emoticons 63.85 (-0.29) | 53.28 (-0.31) | 62.95 (-0.03) | 57.01  (0.05) | 62.64 (-0.04) | 56.80 (-0.03)
- Sentiment Lexicons | 61.34 (-2.79) | 40.94 (-12.64) | 61.28 (-1.70) | 43.52 (-13.43) | 60.01 (-2.67) | 38.89 (-17.93)
- AFINN 63.86 (-0.27) | 53.24 (-0.34) | 62.86 (-0.11) | 56.86 (-0.09) | 62.54 (-0.14) | 56.67 (-0.16)
- MaxDiff 63.87 (-0.26) | 53.28 (-0.31) | 62.80 (-0.18) | 56.82 (-0.14) | 62.45 (-0.24) | 57.04 (0.22)
- Opinion Lexicon 63.97 (-0.17) | 53.27 (-0.31) | 62.80 (-0.18) | 56.81 (-0.15) | 62.55 (-0.14) | 56.66 (-0.17)
- Sentiment 140 63.84 (-0.30) | 53.35 (-0.24) | 62.88 (-0.10) | 56.66 (-0.29) | 62.48 (-0.20) | 56.49 (-0.33)
- SentiStrength 63.77 (-0.36) | 52.96 (-0.63) | 62.99 (0.02) | 56.88 (-0.07) | 62.50 (-0.18) | 56.58 (-0.25)
- SentiWordNet 63.90 (-0.23) | 53.52 (-0.07) | 62.96 (-0.02) | 56.90 (-0.05) | 62.61 (-0.07) | 56.71 (-0.12)
- VADER 63.38 (-0.76) | 51.28 (-2.31) | 62.29 (-0.69) | 54.51 (-2.44) | 62.05 (-0.63) | 54.98 (-1.84)
Baseline 34.21 (-29.92) | 25.49 (-28.10) | 34.21 (-28.77) | 25.49 (-31.46) | 34.21 (-28.47) | 25.49 (-31.33)

Table 5.9: Feature Ablation for Each Classifier. Each Row Stands for the Full Feature Pipeline with the Particular Feature
Removed.
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Chapter 6

Discussion

The results show that FMs, AdaBoost as well as Bagging classifiers are
suitable for sentiment detection of tweets. All three classification algo-
rithms provide a comparable prediction quality. SentTwi with AdaBoost
and Bagging achieves a similar accuracy and F{ ¥-score, while using a
FM results in a slightly better accuracy but the lowest F1P N_score.
Since the provided results are based on the SemEval 2016 test set, we
can compare our results with other SemEval participants. The results
of the official SemEval-2016 Task 4 Subtask A [NRR16| are given in
Appendix In terms of the F}"V-score, SentTwi with AdaBoost
(57%) would be among the top 20 teams of 2016. Comparing our most
accurate model with these teams, SentTwi using a factorization machine
(64.14%) would achieve the third place.

As specified in the confusion matrices and performance results, the main
reason for SentTwi’s moderate F1P N_score are the low precision and re-
call scores for the negative class. Our first assumption was that negations
are not identified correctly and using bigrams would mitigate this issue.
After further analysis of the data obtained by the grid searches, this was
not the case as the results of the best pipeline settings with unigrams
are very close to the scores of the best settings which utilize bigrams
(£0.4% accuracy at most). In addition, both ensemble methods use
different ngrams, whereas their results are similar. This observation is
consistent with Go et al. [GBH09] and Pang et al. [PLV02].

It was unexpected to see that all three Feature Vector Grid Searches rec-
ommend skipping the preprocessing step for the three classification types
(setting pre_active to false) before the POS tagging process gets ex-
ecuted. Similar to the aforementioned bigram results, SentTwi’s best
scores with and without the preprocessing steps are very close together
(less than 0.2% difference in accuracy). The reason for this outcome is
unclear as various studies propose similar preprocessing processes (e.g.,
lowercasing, substituting or replacing phrases) [AX V™11, [KTMT1], TITT5].
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Chapter 7

Conclusion and Future
Work

The main contribution of this thesis is to show that factorization ma-
chines and ensemble methods can be used to predict the sentiment of
tweets. Therefore, we proposed SentTwi, a supervised machine learn-
ing system which uses one of three possible classification algorithms to
classify the sentiment of tweets into positive, neutral or negative. Fur-
thermore, an introduction into sentiment analysis and fundamentals of
factorization machines and ensemble methods are given.

SentTwi can utilize factorization machines, AdaBoost or Bagging en-
sembles as the classification component of choice. By combining a vari-
ety of techniques and components to extract features from tweets, our
experiments show that factorization machines and ensemble methods
are useful for sentiment analysis of tweets and achieve similar results as
other state-of-the-art sentiment classification systems. Features from a
range of existing sentiment lexicons turn out to be the most useful set
of features. The second highest performance gain is achieved with the
features extracted by the bag-of-words vectorizer using either term fre-
quency weighting for the factorization machine or term presence weight-
ing for the AdaBoost and Bagging classifier.

Future work can improve some features of SentTwi to enhance the pre-
diction quality of SentTwi or add new components to adapt SentTwi
for new requirements and future trends:

Improve Negative Predictions The highest performance increase
can probably be obtained by improving the prediction quality of the neg-
ative class. Better negation detection can reduce the number of wrong
classifications by incorporating concepts like negation aware sentiment
lexicons or negation shifters.
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Five-Point Scale Currently all training and test tweets are catego-
rized according to a three-point schema. Many real-world applications
use a five-point scale to rate products, services and more: e.g., Amazon,
MovieLens, and Google Play. Applying such a five-point scale would
turn the existing classification problem into an ordinal regression prob-
lem (i.e., an intermediate between classification and regression). There-
fore, the classifiers have to be either adapted to handle ordering or re-
placed with regressors.

Other Classifiers In addition to the three currently used classifiers,
SentTwi could utilize further classification models: A random forest
classifier as another ensemble method can be used to analyze the impact
of randomness on sentiment classification. Another possible approach for
future work would be the use of deep learning and neural network models
in particular, which are becoming increasingly popular in research.
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Appendix

A.1 ARK POS Tagger tagset

Tag | Description Examples

N | common noun football — cars

O | pronoun you this

- proper noun USA  Google

S nominal + possessive heaven’s  house’s

7 proper noun + possessive Ellen’s Amazon’s

L | nominal + verbal who’s it’s

M | proper noun + verbal Mark’ll  Potter’s

V | verb incl. copula, auxiliaries join  may gonna

A | adjective awesome  c00000l

R | adverb just  only

! interjection tgif omg oh

D determiner her the this

P pre- or postposition, or subordinating | for in  with
subordinating conjunction

& | coordinating conjunction or & but

T | verb particle up out

X | existential there, predeterminers all  there

Y | X + verbal there’s

# | hashtag #ibm  #news

@ | at-mention @Qcisco  @drewbrees

- discourse marker, indications of
continuation across multiple tweets

U | URL or email address http://t.co/123

E | emoticon ) <3

$ numeral one 2nd 6

, punctuation .o, 7

G | other abbreviations, foreign words, smh lkaj —>
possessive endings, symbols, garbage

Table A.1: Tagset by Gimpel et al. [GSO™11] Used by the ARK Tagger
in the POS Tagging Component.
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A.2 Emoticons

Positive Emoticons
(: %) *) /Jo/ 8 8) 8 8D :) )
Dk :=) :=)) =:-x :-B :-D :-P :-] :-b -p
-} 3 > :B :D :P 2] :7) T :"B
:"D P :"b :"p b :c) :0) :0] :o} :p
-, ) R I ;
B L IR < =% = = = =

=] =) =B =D =P =] =b =p =} =
=p =} =-3 =D =’) =] =} B°D XD X-D
\m/ \o/ N\No\ ~-~ ~.°~ °~ "~~~ xD x0xX0o XX
x-D

Neutral Emoticons

- == - = —= :#  # :-@ :-x :-| :0
Q L S ~# "@ :"o :"X :o0 X |
AT =0 =L =0 =X =| >.<
>/ >:\ >< > <
Negative Emoticons
)= ) $:-{ 0 -(C i ( 1= ( =L =1
2/ :< o[ :\ 7 ( 7L o e :o(
o[ :o{ :{ < :-[  :-c 27 ( DL
</3 = =( =/ =[ =\ ="( =[ =7
= =’ =7 =2{ >:(C >:=C >:==(C >:-[ >:-{
>: [ >=(C >=[ >=~( >="[ »>=" >={ D-: D8
D: D:< D; D= DX D~: D°= -’: 0_o
Oo o.0 v.v

Table A.2: List of 91 Positive, 34 Neutral and 66 Negative Emoticons
used by the Emoticon Feature Component.
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A.3 SemEval-2016 Results

FEN Acc

Team Rank % | Rank %

SwissCheese 1 63.3 1 64.6
SENSEI-LIF 2 63.0 7 61.7
UNIMELB 3 61.7 8 61.6
INESC-ID 4 61.0 10 60.0
aueb.twitter.sentiment 5 60.5 6 62.9
SentiSys 6 59.8 9 60.9
I2RNTU 7 59.6 12 59.3
INSIGHT-1 8 59.3 5 63.5
TwiSE 9 58.6 24 52.8
ECNU 10 58.5 16 57.1
NTNUSentEval 11 58.3 2 64.3
MDSENT 12 58.0 20 54.5
CUFE 12 58.0 4 63.7
THUIR 14 57.6 11 59.6
PUT 14 57.6 14 58.4
LYS 16 57.5 13 58.5
1P 17 57.4 23 53.7
UniPI 18 57.1 3 63.9
DIEGOLab16 19 55.4 19 54.9
GTI 20 53.9 26 51.8
OPAL 21 50.5 22 54.1
DSIC-ELIRF 22 50.2 27 51.3
UofLL 23 49.9 15 57.2
ELiRF 23 49.9 21 54.3
ISTI-CNR 25 49.4 17 56.7
SteM 26 47.8 31 45.2
Tweester 27 45.5 25 52.3
Minions 28 41.5 18 55.6
Aicyber 29 40.2 28 50.6
mib 30 40.1 29 48.0
VCU-TSA 31 37.2 32 38.2
SentimentallTists 32 33.9 29 48.0
WR 33 33.0 34 29.8
CICBUAPlp 34 30.3 33 37.4

Table A.3: Official Results for Subtask A: Message Polarity Classi-
fication of the SemFEwval-2016 Task 4: Sentiment Analysis in Twit-
ter. INRR™16]
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